diff --git a/lib/puppet/pops/types/type_calculator.rb b/lib/puppet/pops/types/type_calculator.rb index 34e04141d..f5c149631 100644 --- a/lib/puppet/pops/types/type_calculator.rb +++ b/lib/puppet/pops/types/type_calculator.rb @@ -1,1827 +1,1864 @@ # The TypeCalculator can answer questions about puppet types. # # The Puppet type system is primarily based on sub-classing. When asking the type calculator to infer types from Ruby in general, it # may not provide the wanted answer; it does not for instance take module inclusions and extensions into account. In general the type # system should be unsurprising for anyone being exposed to the notion of type. The type `Data` may require a bit more explanation; this # is an abstract type that includes all scalar types, as well as Array with an element type compatible with Data, and Hash with key # compatible with scalar and elements compatible with Data. Expressed differently; Data is what you typically express using JSON (with # the exception that the Puppet type system also includes Pattern (regular expression) as a scalar. # # Inference # --------- # The `infer(o)` method infers a Puppet type for scalar Ruby objects, and for Arrays and Hashes. # The inference result is instance specific for single typed collections # and allows answering questions about its embedded type. It does not however preserve multiple types in # a collection, and can thus not answer questions like `[1,a].infer() =~ Array[Integer, String]` since the inference # computes the common type Scalar when combining Integer and String. # # The `infer_generic(o)` method infers a generic Puppet type for scalar Ruby object, Arrays and Hashes. # This inference result does not contain instance specific information; e.g. Array[Integer] where the integer # range is the generic default. Just `infer` it also combines types into a common type. # # The `infer_set(o)` method works like `infer` but preserves all type information. It does not do any # reduction into common types or ranges. This method of inference is best suited for answering questions # about an object being an instance of a type. It correctly answers: `[1,a].infer_set() =~ Array[Integer, String]` # # The `generalize!(t)` method modifies an instance specific inference result to a generic. The method mutates # the given argument. Basically, this removes string instances from String, and range from Integer and Float. # # Assignability # ------------- # The `assignable?(t1, t2)` method answers if t2 conforms to t1. The type t2 may be an instance, in which case # its type is inferred, or a type. # # Instance? # --------- # The `instance?(t, o)` method answers if the given object (instance) is an instance that is assignable to the given type. # # String # ------ # Creates a string representation of a type. # # Creation of Type instances # -------------------------- # Instance of the classes in the {Puppet::Pops::Types type model} are used to denote a specific type. It is most convenient # to use the {Puppet::Pops::Types::TypeFactory TypeFactory} when creating instances. # # @note # In general, new instances of the wanted type should be created as they are assigned to models using containment, and a # contained object can only be in one container at a time. Also, the type system may include more details in each type # instance, such as if it may be nil, be empty, contain a certain count etc. Or put differently, the puppet types are not # singletons. # # All types support `copy` which should be used when assigning a type where it is unknown if it is bound or not # to a parent type. A check can be made with `t.eContainer().nil?` # # Equality and Hash # ----------------- # Type instances are equal in terms of Ruby eql? and `==` if they describe the same type, but they are not `equal?` if they are not # the same type instance. Two types that describe the same type have identical hash - this makes them usable as hash keys. # # Types and Subclasses # -------------------- # In general, the type calculator should be used to answer questions if a type is a subtype of another (using {#assignable?}, or # {#instance?} if the question is if a given object is an instance of a given type (or is a subtype thereof). # Many of the types also have a Ruby subtype relationship; e.g. PHashType and PArrayType are both subtypes of PCollectionType, and # PIntegerType, PFloatType, PStringType,... are subtypes of PScalarType. Even if it is possible to answer certain questions about # type by looking at the Ruby class of the types this is considered an implementation detail, and such checks should in general # be performed by the type_calculator which implements the type system semantics. # # The PRuntimeType # ------------- # The PRuntimeType corresponds to a type in the runtime system (currently only supported runtime is 'ruby'). The # type has a runtime_type_name that corresponds to a Ruby Class name. # A Runtime[ruby] type can be used to describe any ruby class except for the puppet types that are specialized # (i.e. PRuntimeType should not be used for Integer, String, etc. since there are specialized types for those). # When the type calculator deals with PRuntimeTypes and checks for assignability, it determines the # "common ancestor class" of two classes. # This check is made based on the superclasses of the two classes being compared. In order to perform this, the # classes must be present (i.e. they are resolved from the string form in the PRuntimeType to a # loaded, instantiated Ruby Class). In general this is not a problem, since the question to produce the common # super type for two objects means that the classes must be present or there would have been # no instances present in the first place. If however the classes are not present, the type # calculator will fall back and state that the two types at least have Any in common. # # @see Puppet::Pops::Types::TypeFactory TypeFactory for how to create instances of types # @see Puppet::Pops::Types::TypeParser TypeParser how to construct a type instance from a String # @see Puppet::Pops::Types Types for details about the type model # # Using the Type Calculator # ----- # The type calculator can be directly used via its class methods. If doing time critical work and doing many # calls to the type calculator, it is more performant to create an instance and invoke the corresponding # instance methods. Note that inference is an expensive operation, rather than inferring the same thing # several times, it is in general better to infer once and then copy the result if mutation to a more generic form is # required. # # @api public # class Puppet::Pops::Types::TypeCalculator Types = Puppet::Pops::Types TheInfinity = 1.0 / 0.0 # because the Infinity symbol is not defined # @api public def self.assignable?(t1, t2) singleton.assignable?(t1,t2) end # Answers, does the given callable accept the arguments given in args (an array or a tuple) # @param callable [Puppet::Pops::Types::PCallableType] - the callable # @param args [Puppet::Pops::Types::PArrayType, Puppet::Pops::Types::PTupleType] args optionally including a lambda callable at the end # @return [Boolan] true if the callable accepts the arguments # # @api public def self.callable?(callable, args) singleton.callable?(callable, args) end # Produces a String representation of the given type. # @param t [Puppet::Pops::Types::PAnyType] the type to produce a string form # @return [String] the type in string form # # @api public # def self.string(t) singleton.string(t) end # @api public def self.infer(o) singleton.infer(o) end # @api public def self.generalize!(o) singleton.generalize!(o) end # @api public def self.infer_set(o) singleton.infer_set(o) end # @api public def self.debug_string(t) singleton.debug_string(t) end # @api public def self.enumerable(t) singleton.enumerable(t) end # @api private def self.singleton() @tc_instance ||= new end # @api public # def initialize @@assignable_visitor ||= Puppet::Pops::Visitor.new(nil,"assignable",1,1) @@infer_visitor ||= Puppet::Pops::Visitor.new(nil,"infer",0,0) @@infer_set_visitor ||= Puppet::Pops::Visitor.new(nil,"infer_set",0,0) @@instance_of_visitor ||= Puppet::Pops::Visitor.new(nil,"instance_of",1,1) @@string_visitor ||= Puppet::Pops::Visitor.new(nil,"string",0,0) @@inspect_visitor ||= Puppet::Pops::Visitor.new(nil,"debug_string",0,0) @@enumerable_visitor ||= Puppet::Pops::Visitor.new(nil,"enumerable",0,0) @@extract_visitor ||= Puppet::Pops::Visitor.new(nil,"extract",0,0) @@generalize_visitor ||= Puppet::Pops::Visitor.new(nil,"generalize",0,0) @@callable_visitor ||= Puppet::Pops::Visitor.new(nil,"callable",1,1) da = Types::PArrayType.new() da.element_type = Types::PDataType.new() @data_array = da h = Types::PHashType.new() h.element_type = Types::PDataType.new() h.key_type = Types::PScalarType.new() @data_hash = h @data_t = Types::PDataType.new() @scalar_t = Types::PScalarType.new() @numeric_t = Types::PNumericType.new() @t = Types::PAnyType.new() # Data accepts a Tuple that has 0-infinity Data compatible entries (e.g. a Tuple equivalent to Array). data_tuple = Types::PTupleType.new() data_tuple.addTypes(Types::PDataType.new()) data_tuple.size_type = Types::PIntegerType.new() data_tuple.size_type.from = 0 data_tuple.size_type.to = nil # infinity @data_tuple_t = data_tuple # Variant type compatible with Data data_variant = Types::PVariantType.new() data_variant.addTypes(@data_hash.copy) data_variant.addTypes(@data_array.copy) data_variant.addTypes(Types::PScalarType.new) data_variant.addTypes(Types::PUndefType.new) data_variant.addTypes(@data_tuple_t.copy) @data_variant_t = data_variant collection_default_size = Types::PIntegerType.new() collection_default_size.from = 0 collection_default_size.to = nil # infinity @collection_default_size_t = collection_default_size non_empty_string = Types::PStringType.new non_empty_string.size_type = Types::PIntegerType.new() non_empty_string.size_type.from = 1 non_empty_string.size_type.to = nil # infinity @non_empty_string_t = non_empty_string @nil_t = Types::PUndefType.new end # Convenience method to get a data type for comparisons # @api private the returned value may not be contained in another element # def data @data_t end # Convenience method to get a variant compatible with the Data type. # @api private the returned value may not be contained in another element # def data_variant @data_variant_t end def self.data_variant singleton.data_variant end # Answers the question 'is it possible to inject an instance of the given class' # A class is injectable if it has a special *assisted inject* class method called `inject` taking # an injector and a scope as argument, or if it has a zero args `initialize` method. # # @param klazz [Class, PRuntimeType] the class/type to check if it is injectable # @return [Class, nil] the injectable Class, or nil if not injectable # @api public # def injectable_class(klazz) # Handle case when we get a PType instead of a class if klazz.is_a?(Types::PRuntimeType) klazz = Puppet::Pops::Types::ClassLoader.provide(klazz) end # data types can not be injected (check again, it is not safe to assume that given RubyRuntime klazz arg was ok) return false unless type(klazz).is_a?(Types::PRuntimeType) if (klazz.respond_to?(:inject) && klazz.method(:inject).arity() == -4) || klazz.instance_method(:initialize).arity() == 0 klazz else nil end end # Answers 'can an instance of type t2 be assigned to a variable of type t'. # Does not accept nil/undef unless the type accepts it. # # @api public # def assignable?(t, t2) if t.is_a?(Class) t = type(t) end if t2.is_a?(Class) t2 = type(t2) end t2_class = t2.class # Unit can be assigned to anything return true if t2_class == Types::PUnitType if t2_class == Types::PVariantType # Assignable if all contained types are assignable t2.types.all? { |vt| @@assignable_visitor.visit_this_1(self, t, vt) } else # Turn NotUndef[T] into T when T is not assignable from Undef if t2_class == Types::PNotUndefType && !(t2.type.nil? || assignable?(t2.type, @nil_t)) assignable?(t, t2.type) else @@assignable_visitor.visit_this_1(self, t, t2) end end end # Returns an enumerable if the t represents something that can be iterated def enumerable(t) @@enumerable_visitor.visit_this_0(self, t) end # Answers, does the given callable accept the arguments given in args (an array or a tuple) # def callable?(callable, args) return false if !self.class.is_kind_of_callable?(callable) # Note that polymorphism is for the args type, the callable is always a callable @@callable_visitor.visit_this_1(self, args, callable) end # Answers if the two given types describe the same type def equals(left, right) return false unless left.is_a?(Types::PAnyType) && right.is_a?(Types::PAnyType) # Types compare per class only - an extra test must be made if the are mutually assignable # to find all types that represent the same type of instance # left == right || (assignable?(right, left) && assignable?(left, right)) end # Answers 'what is the Puppet Type corresponding to the given Ruby class' # @param c [Class] the class for which a puppet type is wanted # @api public # def type(c) raise ArgumentError, "Argument must be a Class" unless c.is_a? Class # Can't use a visitor here since we don't have an instance of the class case when c <= Integer type = Types::PIntegerType.new() when c == Float type = Types::PFloatType.new() when c == Numeric type = Types::PNumericType.new() when c == String type = Types::PStringType.new() when c == Regexp type = Types::PRegexpType.new() when c == NilClass type = Types::PUndefType.new() when c == FalseClass, c == TrueClass type = Types::PBooleanType.new() when c == Class type = Types::PType.new() when c == Array # Assume array of data values type = Types::PArrayType.new() type.element_type = Types::PDataType.new() when c == Hash # Assume hash with scalar keys and data values type = Types::PHashType.new() type.key_type = Types::PScalarType.new() type.element_type = Types::PDataType.new() else type = Types::PRuntimeType.new(:runtime => :ruby, :runtime_type_name => c.name) end type end # Generalizes value specific types. The given type is mutated and returned. # @api public def generalize!(o) @@generalize_visitor.visit_this_0(self, o) o.eAllContents.each { |x| @@generalize_visitor.visit_this_0(self, x) } o end def generalize_Object(o) # do nothing, there is nothing to change for most types end def generalize_PStringType(o) o.values = [] o.size_type = nil [] end def generalize_PCollectionType(o) # erase the size constraint from Array and Hash (if one exists, it is transformed to -Infinity - + Infinity, which is # not desirable. o.size_type = nil end def generalize_PFloatType(o) o.to = nil o.from = nil end def generalize_PIntegerType(o) o.to = nil o.from = nil end # Answers 'what is the single common Puppet Type describing o', or if o is an Array or Hash, what is the # single common type of the elements (or keys and elements for a Hash). # @api public # def infer(o) @@infer_visitor.visit_this_0(self, o) end def infer_generic(o) result = generalize!(infer(o)) result end # Answers 'what is the set of Puppet Types of o' # @api public # def infer_set(o) @@infer_set_visitor.visit_this_0(self, o) end def instance_of(t, o) @@instance_of_visitor.visit_this_1(self, t, o) end def instance_of_Object(t, o) # Undef is Undef and Any, but nothing else when checking instance? return false if (o.nil?) && t.class != Types::PAnyType assignable?(t, infer(o)) end # Anything is an instance of Unit # @api private def instance_of_PUnitType(t, o) true end def instance_of_PArrayType(t, o) return false unless o.is_a?(Array) return false unless o.all? {|element| instance_of(t.element_type, element) } size_t = t.size_type || @collection_default_size_t # optimize by calling directly return instance_of_PIntegerType(size_t, o.size) end # @api private def instance_of_PIntegerType(t, o) return false unless o.is_a?(Integer) x = t.from x = -Float::INFINITY if x.nil? || x == :default y = t.to y = Float::INFINITY if y.nil? || y == :default return x < y ? x <= o && y >= o : y <= o && x >= o end # @api private def instance_of_PStringType(t, o) return false unless o.is_a?(String) # true if size compliant size_t = t.size_type if size_t.nil? || instance_of_PIntegerType(size_t, o.size) values = t.values values.empty? || values.include?(o) else false end end def instance_of_PTupleType(t, o) return false unless o.is_a?(Array) # compute the tuple's min/max size, and check if that size matches size_t = t.size_type || Puppet::Pops::Types::TypeFactory.range(*t.size_range) return false unless instance_of_PIntegerType(size_t, o.size) o.each_with_index do |element, index| return false unless instance_of(t.types[index] || t.types[-1], element) end true end def instance_of_PStructType(t, o) return false unless o.is_a?(Hash) - h = t.hashed_elements - # all keys must be present and have a value (even if nil/undef) - (o.keys - h.keys).empty? && h.all? { |k,v| instance_of(v, o[k]) } + matched = 0 + t.elements.all? do |e| + key = e.name + v = o[key] + if v.nil? && !o.include?(key) + # Entry is missing. Only OK when key is optional + assignable?(e.key_type, @nil_t) + else + matched += 1 + instance_of(e.value_type, v) + end + end && matched == o.size end def instance_of_PHashType(t, o) return false unless o.is_a?(Hash) key_t = t.key_type element_t = t.element_type return false unless o.keys.all? {|key| instance_of(key_t, key) } && o.values.all? {|value| instance_of(element_t, value) } size_t = t.size_type || @collection_default_size_t # optimize by calling directly return instance_of_PIntegerType(size_t, o.size) end def instance_of_PDataType(t, o) instance_of(@data_variant_t, o) end def instance_of_PNotUndefType(t, o) !(o.nil? || o == :undef) && (t.type.nil? || instance_of(t.type, o)) end def instance_of_PUndefType(t, o) o.nil? || o == :undef end def instance_of_POptionalType(t, o) instance_of_PUndefType(t, o) || instance_of(t.optional_type, o) end def instance_of_PVariantType(t, o) # instance of variant if o is instance? of any of variant's types t.types.any? { |option_t| instance_of(option_t, o) } end # Answers 'is o an instance of type t' # @api public # def self.instance?(t, o) singleton.instance_of(t,o) end # Answers 'is o an instance of type t' # @api public # def instance?(t, o) instance_of(t,o) end # Answers if t is a puppet type # @api public # def is_ptype?(t) return t.is_a?(Types::PAnyType) end # Answers if t represents the puppet type PUndefType # @api public # def is_pnil?(t) return t.nil? || t.is_a?(Types::PUndefType) end # Answers, 'What is the common type of t1 and t2?' # # TODO: The current implementation should be optimized for performance # # @api public # def common_type(t1, t2) raise ArgumentError, 'two types expected' unless (is_ptype?(t1) || is_pnil?(t1)) && (is_ptype?(t2) || is_pnil?(t2)) # TODO: This is not right since Scalar U Undef is Any # if either is nil, the common type is the other if is_pnil?(t1) return t2 elsif is_pnil?(t2) return t1 end # If either side is Unit, it is the other type if t1.is_a?(Types::PUnitType) return t2 elsif t2.is_a?(Types::PUnitType) return t1 end # Simple case, one is assignable to the other if assignable?(t1, t2) return t1 elsif assignable?(t2, t1) return t2 end # when both are arrays, return an array with common element type if t1.is_a?(Types::PArrayType) && t2.is_a?(Types::PArrayType) type = Types::PArrayType.new() type.element_type = common_type(t1.element_type, t2.element_type) return type end # when both are hashes, return a hash with common key- and element type if t1.is_a?(Types::PHashType) && t2.is_a?(Types::PHashType) type = Types::PHashType.new() type.key_type = common_type(t1.key_type, t2.key_type) type.element_type = common_type(t1.element_type, t2.element_type) return type end # when both are host-classes, reduce to PHostClass[] (since one was not assignable to the other) if t1.is_a?(Types::PHostClassType) && t2.is_a?(Types::PHostClassType) return Types::PHostClassType.new() end # when both are resources, reduce to Resource[T] or Resource[] (since one was not assignable to the other) if t1.is_a?(Types::PResourceType) && t2.is_a?(Types::PResourceType) result = Types::PResourceType.new() # only Resource[] unless the type name is the same if t1.type_name == t2.type_name then result.type_name = t1.type_name end # the cross assignability test above has already determined that they do not have the same type and title return result end # Integers have range, expand the range to the common range if t1.is_a?(Types::PIntegerType) && t2.is_a?(Types::PIntegerType) t1range = from_to_ordered(t1.from, t1.to) t2range = from_to_ordered(t2.from, t2.to) t = Types::PIntegerType.new() from = [t1range[0], t2range[0]].min to = [t1range[1], t2range[1]].max t.from = from unless from == TheInfinity t.to = to unless to == TheInfinity return t end # Floats have range, expand the range to the common range if t1.is_a?(Types::PFloatType) && t2.is_a?(Types::PFloatType) t1range = from_to_ordered(t1.from, t1.to) t2range = from_to_ordered(t2.from, t2.to) t = Types::PFloatType.new() from = [t1range[0], t2range[0]].min to = [t1range[1], t2range[1]].max t.from = from unless from == TheInfinity t.to = to unless to == TheInfinity return t end if t1.is_a?(Types::PStringType) && t2.is_a?(Types::PStringType) t = Types::PStringType.new() t.values = t1.values | t2.values unless t1.values.empty? || t2.values.empty? t.size_type = common_type(t1.size_type, t2.size_type) unless t1.size_type.nil? || t2.size_type.nil? return t end if t1.is_a?(Types::PPatternType) && t2.is_a?(Types::PPatternType) t = Types::PPatternType.new() # must make copies since patterns are contained types, not data-types t.patterns = (t1.patterns | t2.patterns).map(&:copy) return t end if t1.is_a?(Types::PEnumType) && t2.is_a?(Types::PEnumType) # The common type is one that complies with either set t = Types::PEnumType.new t.values = t1.values | t2.values return t end if t1.is_a?(Types::PVariantType) && t2.is_a?(Types::PVariantType) # The common type is one that complies with either set t = Types::PVariantType.new t.types = (t1.types | t2.types).map(&:copy) return t end if t1.is_a?(Types::PRegexpType) && t2.is_a?(Types::PRegexpType) # if they were identical, the general rule would return a parameterized regexp # since they were not, the result is a generic regexp type return Types::PPatternType.new() end if t1.is_a?(Types::PCallableType) && t2.is_a?(Types::PCallableType) # They do not have the same signature, and one is not assignable to the other, # what remains is the most general form of Callable return Types::PCallableType.new() end # Common abstract types, from most specific to most general if common_numeric?(t1, t2) return Types::PNumericType.new() end if common_scalar?(t1, t2) return Types::PScalarType.new() end if common_data?(t1,t2) return Types::PDataType.new() end # Meta types Type[Integer] + Type[String] => Type[Data] if t1.is_a?(Types::PType) && t2.is_a?(Types::PType) type = Types::PType.new() type.type = common_type(t1.type, t2.type) return type end # If both are Runtime types if t1.is_a?(Types::PRuntimeType) && t2.is_a?(Types::PRuntimeType) if t1.runtime == t2.runtime && t1.runtime_type_name == t2.runtime_type_name return t1 end # finding the common super class requires that names are resolved to class # NOTE: This only supports runtime type of :ruby c1 = Types::ClassLoader.provide_from_type(t1) c2 = Types::ClassLoader.provide_from_type(t2) if c1 && c2 c2_superclasses = superclasses(c2) superclasses(c1).each do|c1_super| c2_superclasses.each do |c2_super| if c1_super == c2_super return Types::PRuntimeType.new(:runtime => :ruby, :runtime_type_name => c1_super.name) end end end end end # They better both be Any type, or the wrong thing was asked and nil is returned if t1.is_a?(Types::PAnyType) && t2.is_a?(Types::PAnyType) return Types::PAnyType.new() end end # Produces the superclasses of the given class, including the class def superclasses(c) result = [c] while s = c.superclass result << s c = s end result end # Produces a string representing the type # @api public # def string(t) @@string_visitor.visit_this_0(self, t) end # Produces a debug string representing the type (possibly with more information that the regular string format) # @api public # def debug_string(t) @@inspect_visitor.visit_this_0(self, t) end # Reduces an enumerable of types to a single common type. # @api public # def reduce_type(enumerable) enumerable.reduce(nil) {|memo, t| common_type(memo, t) } end # Reduce an enumerable of objects to a single common type # @api public # def infer_and_reduce_type(enumerable) reduce_type(enumerable.collect() {|o| infer(o) }) end # The type of all classes is PType # @api private # def infer_Class(o) Types::PType.new() end # @api private def infer_Closure(o) o.type() end # @api private def infer_Function(o) o.class.dispatcher.to_type end # @api private def infer_Object(o) Types::PRuntimeType.new(:runtime => :ruby, :runtime_type_name => o.class.name) end # The type of all types is PType # @api private # def infer_PAnyType(o) type = Types::PType.new() type.type = o.copy type end # The type of all types is PType # This is the metatype short circuit. # @api private # def infer_PType(o) type = Types::PType.new() type.type = o.copy type end # @api private def infer_String(o) t = Types::PStringType.new() t.addValues(o) t.size_type = size_as_type(o) t end # @api private def infer_Float(o) t = Types::PFloatType.new() t.from = o t.to = o t end # @api private def infer_Integer(o) t = Types::PIntegerType.new() t.from = o t.to = o t end # @api private def infer_Regexp(o) t = Types::PRegexpType.new() t.pattern = o.source t end # @api private def infer_NilClass(o) Types::PUndefType.new() end # @api private # @param o [Proc] def infer_Proc(o) min = 0 max = 0 if o.respond_to?(:parameters) mapped_types = o.parameters.map do |p| param_t = Types::PAnyType.new case p[0] when :rest max = :default break param_t when :req min += 1 end max += 1 param_t end else # Cannot correctly compute the signature in Ruby 1.8.7 because arity for # optional values is screwed up (there is no way to get the upper limit), # an optional looks the same as a varargs. arity = o.arity if arity < 0 min = -arity - 1 max = :default # i.e. infinite (which is wrong when there are optional - flaw in 1.8.7) else min = max = arity end mapped_types = Array.new(min) { Types::PAnyType.new } end if min == 0 || min != max mapped_types << min mapped_types << max end Types::TypeFactory.callable(*mapped_types) end # @api private def infer_PuppetProc(o) infer_Closure(o.closure) end # Inference of :default as PDefaultType, and all other are Ruby[Symbol] # @api private def infer_Symbol(o) case o when :default Types::PDefaultType.new() else infer_Object(o) end end # @api private def infer_TrueClass(o) Types::PBooleanType.new() end # @api private def infer_FalseClass(o) Types::PBooleanType.new() end # @api private # A Puppet::Parser::Resource, or Puppet::Resource # def infer_Resource(o) t = Types::PResourceType.new() t.type_name = o.type.to_s.downcase # Only Puppet::Resource can have a title that is a symbol :undef, a PResource cannot. # A mapping must be made to empty string. A nil value will result in an error later title = o.title t.title = (:undef == title ? '' : title) type = Types::PType.new() type.type = t type end # @api private def infer_Array(o) type = Types::PArrayType.new() type.element_type = if o.empty? Types::PUndefType.new() else infer_and_reduce_type(o) end type.size_type = size_as_type(o) type end # @api private def infer_Hash(o) type = Types::PHashType.new() if o.empty? ktype = Types::PUndefType.new() etype = Types::PUndefType.new() else ktype = infer_and_reduce_type(o.keys()) etype = infer_and_reduce_type(o.values()) end type.key_type = ktype type.element_type = etype type.size_type = size_as_type(o) type end def size_as_type(collection) size = collection.size t = Types::PIntegerType.new() t.from = size t.to = size t end # Common case for everything that intrinsically only has a single type def infer_set_Object(o) infer(o) end def infer_set_Array(o) if o.empty? type = Types::PArrayType.new() type.element_type = Types::PUndefType.new() type.size_type = size_as_type(o) else type = Types::PTupleType.new() type.types = o.map() {|x| infer_set(x) } end type end def infer_set_Hash(o) if o.empty? type = Types::PHashType.new type.key_type = Types::PUndefType.new type.element_type = Types::PUndefType.new type.size_type = size_as_type(o) - else - if o.keys.find {|k| !instance_of_PStringType(@non_empty_string_t, k) } - type = Types::PHashType.new - ktype = Types::PVariantType.new - ktype.types = o.keys.map {|k| infer_set(k) } - etype = Types::PVariantType.new - etype.types = o.values.map {|e| infer_set(e) } - type.key_type = unwrap_single_variant(ktype) - type.element_type = unwrap_single_variant(etype) - type.size_type = size_as_type(o) - else - elements = [] - o.each_pair do |k,v| - element = Types::PStructElement.new - element.name = k - element.type = infer_set(v) - elements << element - end - type = Types::PStructType.new - type.elements = elements + elsif o.keys.all? {|k| instance_of_PStringType(@non_empty_string_t, k) } + type = Types::PStructType.new + type.elements = o.map do |k,v| + element = Types::PStructElement.new + element.key_type = infer_String(k) + element.value_type = infer_set(v) + element end + else + type = Types::PHashType.new + ktype = Types::PVariantType.new + ktype.types = o.keys.map {|k| infer_set(k) } + etype = Types::PVariantType.new + etype.types = o.values.map {|e| infer_set(e) } + type.key_type = unwrap_single_variant(ktype) + type.element_type = unwrap_single_variant(etype) + type.size_type = size_as_type(o) end type end def unwrap_single_variant(possible_variant) if possible_variant.is_a?(Types::PVariantType) && possible_variant.types.size == 1 possible_variant.types[0] else possible_variant end end # False in general type calculator # @api private def assignable_Object(t, t2) false end # @api private def assignable_PAnyType(t, t2) t2.is_a?(Types::PAnyType) end # @api private def assignable_PNotUndefType(t, t2) !assignable?(t2, @nil_t) && (t.type.nil? || assignable?(t.type, t2)) end # @api private def assignable_PUndefType(t, t2) # Only undef/nil is assignable to nil type t2.is_a?(Types::PUndefType) end # Anything is assignable to a Unit type # @api private def assignable_PUnitType(t, t2) true end # @api private def assignable_PDefaultType(t, t2) # Only default is assignable to default type t2.is_a?(Types::PDefaultType) end # @api private def assignable_PScalarType(t, t2) t2.is_a?(Types::PScalarType) end # @api private def assignable_PNumericType(t, t2) t2.is_a?(Types::PNumericType) end # @api private def assignable_PIntegerType(t, t2) return false unless t2.is_a?(Types::PIntegerType) trange = from_to_ordered(t.from, t.to) t2range = from_to_ordered(t2.from, t2.to) # If t2 min and max are within the range of t trange[0] <= t2range[0] && trange[1] >= t2range[1] end # Transform int range to a size constraint # if range == nil the constraint is 1,1 # if range.from == nil min size = 1 # if range.to == nil max size == Infinity # def size_range(range) return [1,1] if range.nil? from = range.from to = range.to x = from.nil? ? 1 : from y = to.nil? ? TheInfinity : to if x < y [x, y] else [y, x] end end # @api private def from_to_ordered(from, to) x = (from.nil? || from == :default) ? -TheInfinity : from y = (to.nil? || to == :default) ? TheInfinity : to if x < y [x, y] else [y, x] end end # @api private def assignable_PVariantType(t, t2) # Data is a specific variant t2 = @data_variant_t if t2.is_a?(Types::PDataType) if t2.is_a?(Types::PVariantType) # A variant is assignable if all of its options are assignable to one of this type's options return true if t == t2 t2.types.all? do |other| # if the other is a Variant, all of its options, but be assignable to one of this type's options other = other.is_a?(Types::PDataType) ? @data_variant_t : other if other.is_a?(Types::PVariantType) assignable?(t, other) else t.types.any? {|option_t| assignable?(option_t, other) } end end else # A variant is assignable if t2 is assignable to any of its types t.types.any? { |option_t| assignable?(option_t, t2) } end end # Catch all not callable combinations def callable_Object(o, callable_t) false end def callable_PTupleType(args_tuple, callable_t) if args_tuple.size_type raise ArgumentError, "Callable tuple may not have a size constraint when used as args" end # Assume no block was given - i.e. it is nil, and its type is PUndefType block_t = @nil_t if self.class.is_kind_of_callable?(args_tuple.types.last) # a split is needed to make it possible to use required, optional, and varargs semantics # of the tuple type. # args_tuple = args_tuple.copy # to drop the callable, it must be removed explicitly since this is an rgen array args_tuple.removeTypes(block_t = args_tuple.types.last()) else # no block was given, if it is required, the below will fail end # unless argument types match parameter types return false unless assignable?(callable_t.param_types, args_tuple) # can the given block be *called* with a signature requirement specified by callable_t? assignable?(callable_t.block_type || @nil_t, block_t) end # @api private def self.is_kind_of_callable?(t, optional = true) case t when Types::PCallableType true when Types::POptionalType optional && is_kind_of_callable?(t.optional_type, optional) when Types::PVariantType t.types.all? {|t2| is_kind_of_callable?(t2, optional) } else false end end + # @api private + def self.is_kind_of_optional?(t, optional = true) + case t + when Types::POptionalType + true + when Types::PVariantType + t.types.all? {|t2| is_kind_of_optional?(t2, optional) } + else + false + end + end def callable_PArrayType(args_array, callable_t) return false unless assignable?(callable_t.param_types, args_array) # does not support calling with a block, but have to check that callable is ok with missing block assignable?(callable_t.block_type || @nil_t, @nil_t) end def callable_PUndefType(nil_t, callable_t) # if callable_t is Optional (or indeed PUndefType), this means that 'missing callable' is accepted assignable?(callable_t, nil_t) end def callable_PCallableType(given_callable_t, required_callable_t) # If the required callable is euqal or more specific than the given, the given is callable assignable?(required_callable_t, given_callable_t) end def max(a,b) a >=b ? a : b end def min(a,b) a <= b ? a : b end def assignable_PTupleType(t, t2) return true if t == t2 || t.types.empty? && (t2.is_a?(Types::PArrayType)) size_t = t.size_type || Puppet::Pops::Types::TypeFactory.range(*t.size_range) if t2.is_a?(Types::PTupleType) size_t2 = t2.size_type || Puppet::Pops::Types::TypeFactory.range(*t2.size_range) # not assignable if the number of types in t2 is outside number of types in t1 if assignable?(size_t, size_t2) t2.types.size.times do |index| return false unless assignable?((t.types[index] || t.types[-1]), t2.types[index]) end return true else return false end elsif t2.is_a?(Types::PArrayType) t2_entry = t2.element_type # Array of anything can not be assigned (unless tuple is tuple of anything) - this case # was handled at the top of this method. # return false if t2_entry.nil? size_t = t.size_type || Puppet::Pops::Types::TypeFactory.range(*t.size_range) size_t2 = t2.size_type || @collection_default_size_t return false unless assignable?(size_t, size_t2) min(t.types.size, size_t2.range()[1]).times do |index| return false unless assignable?((t.types[index] || t.types[-1]), t2_entry) end true else false end end # Produces the tuple entry at the given index given a tuple type, its from/to constraints on the last # type, and an index. # Produces nil if the index is out of bounds # from must be less than to, and from may not be less than 0 # # @api private # def tuple_entry_at(tuple_t, from, to, index) regular = (tuple_t.types.size - 1) if index < regular tuple_t.types[index] elsif index < regular + to # in the varargs part tuple_t.types[-1] else nil end end # @api private # def assignable_PStructType(t, t2) if t2.is_a?(Types::PStructType) - h = t.hashed_elements h2 = t2.hashed_elements - (h2.keys - h.keys).empty? && h.all? {|k, v| v2 = h2[k]; assignable?(v, v2.nil? ? @nil_t : v2) } + matched = 0 + t.elements.all? do |e1| + e2 = h2[e1.name] + if e2.nil? + assignable?(e1.key_type, @nil_t) + else + matched += 1 + assignable?(e1.key_type, e2.key_type) && assignable?(e1.value_type, e2.value_type) + end + end && matched == h2.size elsif t2.is_a?(Types::PHashType) - size_t2 = t2.size_type || @collection_default_size_t - size_t = Types::PIntegerType.new - elements = t.elements - size_t.from = elements.count {|e| !assignable?(e.type, @nil_t) } - size_t.to = elements.size - # compatible size - # hash key type must be string of min 1 size - # hash value t must be assignable to each key - element_type = t2.element_type - assignable_PIntegerType(size_t, size_t2) && - (size_t2.to == 0 || assignable?(@non_empty_string_t, t2.key_type)) && - elements.all? {|e| assignable?(e.type, element_type) } + required = 0 + required_elements_assignable = t.elements.all? do |e| + if assignable?(e.key_type, @nil_t) + true + else + required += 1 + assignable?(e.value_type, t2.element_type) + end + end + if required_elements_assignable + size_t2 = t2.size_type || @collection_default_size_t + size_t = Types::PIntegerType.new + size_t.from = required + size_t.to = t.elements.size + assignable_PIntegerType(size_t, size_t2) + end else false end end # @api private def assignable_POptionalType(t, t2) return true if t2.is_a?(Types::PUndefType) return true if t.optional_type.nil? if t2.is_a?(Types::POptionalType) assignable?(t.optional_type, t2.optional_type || @t) else assignable?(t.optional_type, t2) end end # @api private def assignable_PEnumType(t, t2) return true if t == t2 if t.values.empty? return true if t2.is_a?(Types::PStringType) || t2.is_a?(Types::PEnumType) || t2.is_a?(Types::PPatternType) end case t2 when Types::PStringType # if the set of strings are all found in the set of enums !t2.values.empty?() && t2.values.all? { |s| t.values.any? { |e| e == s }} when Types::PVariantType t2.types.all? {|variant_t| assignable_PEnumType(t, variant_t) } when Types::PEnumType # empty means any enum return true if t.values.empty? !t2.values.empty? && t2.values.all? { |s| t.values.any? {|e| e == s }} else false end end # @api private def assignable_PStringType(t, t2) if t.values.empty? # A general string is assignable by any other string or pattern restricted string # if the string has a size constraint it does not match since there is no reasonable way # to compute the min/max length a pattern will match. For enum, it is possible to test that # each enumerator value is within range size_t = t.size_type || @collection_default_size_t case t2 when Types::PStringType # true if size compliant size_t2 = t2.size_type || @collection_default_size_t assignable_PIntegerType(size_t, size_t2) when Types::PPatternType # true if size constraint is at least 0 to +Infinity (which is the same as the default) assignable_PIntegerType(size_t, @collection_default_size_t) when Types::PEnumType if t2.values && !t2.values.empty? # true if all enum values are within range min, max = t2.values.map(&:size).minmax trange = from_to_ordered(size_t.from, size_t.to) t2range = [min, max] # If t2 min and max are within the range of t trange[0] <= t2range[0] && trange[1] >= t2range[1] else # enum represents all enums, and thus all strings, a sized constrained string can thus not # be assigned any enum (unless it is max size). assignable_PIntegerType(size_t, @collection_default_size_t) end else # no other type matches string false end elsif t2.is_a?(Types::PStringType) # A specific string acts as a set of strings - must have exactly the same strings # In this case, size does not matter since the definition is very precise anyway Set.new(t.values) == Set.new(t2.values) else # All others are false, since no other type describes the same set of specific strings false end end # @api private def assignable_PPatternType(t, t2) return true if t == t2 case t2 when Types::PStringType, Types::PEnumType values = t2.values when Types::PVariantType return t2.types.all? {|variant_t| assignable_PPatternType(t, variant_t) } when Types::PPatternType return t.patterns.empty? ? true : false else return false end if t2.values.empty? # Strings / Enums (unknown which ones) cannot all match a pattern, but if there is no pattern it is ok # (There should really always be a pattern, but better safe than sorry). return t.patterns.empty? ? true : false end # all strings in String/Enum type must match one of the patterns in Pattern type, # or Pattern represents all Patterns == all Strings regexps = t.patterns.map {|p| p.regexp } regexps.empty? || t2.values.all? { |v| regexps.any? {|re| re.match(v) } } end # @api private def assignable_PFloatType(t, t2) return false unless t2.is_a?(Types::PFloatType) trange = from_to_ordered(t.from, t.to) t2range = from_to_ordered(t2.from, t2.to) # If t2 min and max are within the range of t trange[0] <= t2range[0] && trange[1] >= t2range[1] end # @api private def assignable_PBooleanType(t, t2) t2.is_a?(Types::PBooleanType) end # @api private def assignable_PRegexpType(t, t2) t2.is_a?(Types::PRegexpType) && (t.pattern.nil? || t.pattern == t2.pattern) end # @api private def assignable_PCallableType(t, t2) return false unless t2.is_a?(Types::PCallableType) # nil param_types means, any other Callable is assignable return true if t.param_types.nil? # NOTE: these tests are made in reverse as it is calling the callable that is constrained # (it's lower bound), not its upper bound return false unless assignable?(t2.param_types, t.param_types) # names are ignored, they are just information # Blocks must be compatible this_block_t = t.block_type || @nil_t that_block_t = t2.block_type || @nil_t assignable?(that_block_t, this_block_t) end # @api private def assignable_PCollectionType(t, t2) size_t = t.size_type || @collection_default_size_t case t2 when Types::PCollectionType size_t2 = t2.size_type || @collection_default_size_t assignable_PIntegerType(size_t, size_t2) when Types::PTupleType # compute the tuple's min/max size, and check if that size matches from, to = size_range(t2.size_type) t2s = Types::PIntegerType.new() t2s.from = t2.types.size - 1 + from t2s.to = t2.types.size - 1 + to assignable_PIntegerType(size_t, t2s) when Types::PStructType from = to = t2.elements.size t2s = Types::PIntegerType.new() t2s.from = from t2s.to = to assignable_PIntegerType(size_t, t2s) else false end end # @api private def assignable_PType(t, t2) return false unless t2.is_a?(Types::PType) return true if t.type.nil? # wide enough to handle all types return false if t2.type.nil? # wider than t assignable?(t.type, t2.type) end # Array is assignable if t2 is an Array and t2's element type is assignable, or if t2 is a Tuple # where # @api private def assignable_PArrayType(t, t2) if t2.is_a?(Types::PArrayType) return false unless t.element_type.nil? || assignable?(t.element_type, t2.element_type || @t) assignable_PCollectionType(t, t2) elsif t2.is_a?(Types::PTupleType) return false unless t.element_type.nil? || t2.types.all? {|t2_element| assignable?(t.element_type, t2_element) } t2_regular = t2.types[0..-2] t2_ranged = t2.types[-1] t2_from, t2_to = size_range(t2.size_type) t2_required = t2_regular.size + t2_from t_entry = t.element_type # Tuple of anything can not be assigned (unless array is tuple of anything) - this case # was handled at the top of this method. # return false if t_entry.nil? # array type may be size constrained size_t = t.size_type || @collection_default_size_t min, max = size_t.range # Tuple with fewer min entries can not be assigned return false if t2_required < min # Tuple with more optionally available entries can not be assigned return false if t2_regular.size + t2_to > max # each tuple type must be assignable to the element type t2_required.times do |index| t2_entry = tuple_entry_at(t2, t2_from, t2_to, index) return false unless assignable?(t_entry, t2_entry) end # ... and so must the last, possibly optional (ranged) type return assignable?(t_entry, t2_ranged) else false end end # Hash is assignable if t2 is a Hash and t2's key and element types are assignable # @api private def assignable_PHashType(t, t2) case t2 when Types::PHashType return true if (t.size_type.nil? || t.size_type.from == 0) && t2.is_the_empty_hash? return false unless t.key_type.nil? || assignable?(t.key_type, t2.key_type || @t) return false unless t.element_type.nil? || assignable?(t.element_type, t2.element_type || @t) assignable_PCollectionType(t, t2) when Types::PStructType # hash must accept String as key type # hash must accept all value types # hash must accept the size of the struct size_t = t.size_type || @collection_default_size_t min, max = size_t.range struct_size = t2.elements.size key_type = t.key_type element_type = t.element_type ( struct_size >= min && struct_size <= max && - t2.elements.all? {|e| (key_type.nil? || instance_of(key_type, e.name)) && (element_type.nil? || assignable?(element_type, e.type)) }) + t2.elements.all? {|e| (key_type.nil? || instance_of(key_type, e.name)) && (element_type.nil? || assignable?(element_type, e.value_type)) }) else false end end # @api private def assignable_PCatalogEntryType(t1, t2) t2.is_a?(Types::PCatalogEntryType) end # @api private def assignable_PHostClassType(t1, t2) return false unless t2.is_a?(Types::PHostClassType) # Class = Class[name}, Class[name] != Class return true if t1.class_name.nil? # Class[name] = Class[name] return t1.class_name == t2.class_name end # @api private def assignable_PResourceType(t1, t2) return false unless t2.is_a?(Types::PResourceType) return true if t1.type_name.nil? return false if t1.type_name != t2.type_name return true if t1.title.nil? return t1.title == t2.title end # Data is assignable by other Data and by Array[Data] and Hash[Scalar, Data] # @api private def assignable_PDataType(t, t2) # We cannot put the NotUndefType[Data] in the @data_variant_t since that causes an endless recursion case t2 when Types::PDataType true when Types::PNotUndefType assignable?(t, t2.type || @t) else assignable?(@data_variant_t, t2) end end # Assignable if t2's has the same runtime and the runtime name resolves to # a class that is the same or subclass of t1's resolved runtime type name # @api private def assignable_PRuntimeType(t1, t2) return false unless t2.is_a?(Types::PRuntimeType) return false unless t1.runtime == t2.runtime return true if t1.runtime_type_name.nil? # t1 is wider return false if t2.runtime_type_name.nil? # t1 not nil, so t2 can not be wider # NOTE: This only supports Ruby, must change when/if the set of runtimes is expanded c1 = class_from_string(t1.runtime_type_name) c2 = class_from_string(t2.runtime_type_name) return false unless c1.is_a?(Class) && c2.is_a?(Class) !!(c2 <= c1) end # @api private def debug_string_Object(t) string(t) end # @api private def string_PType(t) if t.type.nil? "Type" else "Type[#{string(t.type)}]" end end # @api private def string_NilClass(t) ; '?' ; end # @api private def string_String(t) ; t ; end # @api private def string_Symbol(t) ; t.to_s ; end def string_PAnyType(t) ; "Any" ; end # @api private def string_PUndefType(t) ; 'Undef' ; end # @api private def string_PDefaultType(t) ; 'Default' ; end # @api private def string_PBooleanType(t) ; "Boolean" ; end # @api private def string_PScalarType(t) ; "Scalar" ; end # @api private def string_PDataType(t) ; "Data" ; end # @api private def string_PNumericType(t) ; "Numeric" ; end # @api private def string_PIntegerType(t) range = range_array_part(t) unless range.empty? "Integer[#{range.join(', ')}]" else "Integer" end end # Produces a string from an Integer range type that is used inside other type strings # @api private def range_array_part(t) return [] if t.nil? || (t.from.nil? && t.to.nil?) [t.from.nil? ? 'default' : t.from , t.to.nil? ? 'default' : t.to ] end # @api private def string_PFloatType(t) range = range_array_part(t) unless range.empty? "Float[#{range.join(', ')}]" else "Float" end end # @api private def string_PRegexpType(t) t.pattern.nil? ? "Regexp" : "Regexp[#{t.regexp.inspect}]" end # @api private def string_PStringType(t) # skip values in regular output - see debug_string range = range_array_part(t.size_type) unless range.empty? "String[#{range.join(', ')}]" else "String" end end # @api private def debug_string_PStringType(t) range = range_array_part(t.size_type) range_part = range.empty? ? '' : '[' << range.join(' ,') << '], ' "String[" << range_part << (t.values.map {|s| "'#{s}'" }).join(', ') << ']' end # @api private def string_PEnumType(t) return "Enum" if t.values.empty? "Enum[" << t.values.map {|s| "'#{s}'" }.join(', ') << ']' end # @api private def string_PVariantType(t) return "Variant" if t.types.empty? "Variant[" << t.types.map {|t2| string(t2) }.join(', ') << ']' end # @api private def string_PTupleType(t) range = range_array_part(t.size_type) return "Tuple" if t.types.empty? s = "Tuple[" << t.types.map {|t2| string(t2) }.join(', ') unless range.empty? s << ", " << range.join(', ') end s << "]" s end # @api private def string_PCallableType(t) # generic return "Callable" if t.param_types.nil? if t.param_types.types.empty? range = [0, 0] else range = range_array_part(t.param_types.size_type) end # translate to string, and skip Unit types types = t.param_types.types.map {|t2| string(t2) unless t2.class == Types::PUnitType }.compact s = "Callable[" << types.join(', ') unless range.empty? (s << ', ') unless types.empty? s << range.join(', ') end # Add block T last (after min, max) if present) # unless t.block_type.nil? (s << ', ') unless types.empty? && range.empty? s << string(t.block_type) end s << "]" s end # @api private def string_PStructType(t) return "Struct" if t.elements.empty? "Struct[{" << t.elements.map {|element| string(element) }.join(', ') << "}]" end def string_PStructElement(t) - "'#{t.name}'=>#{string(t.type)}" + k = t.key_type + value_optional = assignable?(t.value_type, @nil_t) + key_string = + if k.is_a?(Types::POptionalType) + # Output as literal String + value_optional ? "'#{t.name}'" : string(k) + else + value_optional ? "NotUndef['#{t.name}']" : "'#{t.name}'" + end + "#{key_string}=>#{string(t.value_type)}" end # @api private def string_PPatternType(t) return "Pattern" if t.patterns.empty? "Pattern[" << t.patterns.map {|s| "#{s.regexp.inspect}" }.join(', ') << ']' end # @api private def string_PCollectionType(t) range = range_array_part(t.size_type) unless range.empty? "Collection[#{range.join(', ')}]" else "Collection" end end # @api private def string_PUnitType(t) "Unit" end # @api private def string_PRuntimeType(t) ; "Runtime[#{string(t.runtime)}, #{string(t.runtime_type_name)}]" ; end # @api private def string_PArrayType(t) parts = [string(t.element_type)] + range_array_part(t.size_type) "Array[#{parts.join(', ')}]" end # @api private def string_PHashType(t) parts = [string(t.key_type), string(t.element_type)] + range_array_part(t.size_type) "Hash[#{parts.join(', ')}]" end # @api private def string_PCatalogEntryType(t) "CatalogEntry" end # @api private def string_PHostClassType(t) if t.class_name "Class[#{t.class_name}]" else "Class" end end # @api private def string_PResourceType(t) if t.type_name if t.title "#{capitalize_segments(t.type_name)}['#{t.title}']" else capitalize_segments(t.type_name) end else "Resource" end end # @api private def string_PNotUndefType(t) contained_type = t.type if contained_type.nil? || contained_type.class == Puppet::Pops::Types::PAnyType 'NotUndef' else if contained_type.is_a?(Puppet::Pops::Types::PStringType) && contained_type.values.size == 1 "NotUndef['#{contained_type.values[0]}']" else "NotUndef[#{string(contained_type)}]" end end end def string_POptionalType(t) if t.optional_type.nil? "Optional" else "Optional[#{string(t.optional_type)}]" end end # Catches all non enumerable types # @api private def enumerable_Object(o) nil end # @api private def enumerable_PIntegerType(t) # Not enumerable if representing an infinite range return nil if t.size == TheInfinity t end def self.copy_as_tuple(t) case t when Types::PTupleType t.copy when Types::PArrayType # transform array to tuple result = Types::PTupleType.new result.addTypes(t.element_type.copy) result.size_type = t.size_type.nil? ? nil : t.size_type.copy result else raise ArgumentError, "Internal Error: Only Array and Tuple can be given to copy_as_tuple" end end private NAME_SEGMENT_SEPARATOR = '::'.freeze def capitalize_segments(s) s.split(NAME_SEGMENT_SEPARATOR).map(&:capitalize).join(NAME_SEGMENT_SEPARATOR) end def class_from_string(str) begin str.split(NAME_SEGMENT_SEPARATOR).inject(Object) do |memo, name_segment| memo.const_get(name_segment) end rescue NameError return nil end end def common_data?(t1, t2) assignable?(@data_t, t1) && assignable?(@data_t, t2) end def common_scalar?(t1, t2) assignable?(@scalar_t, t1) && assignable?(@scalar_t, t2) end def common_numeric?(t1, t2) assignable?(@numeric_t, t1) && assignable?(@numeric_t, t2) end end diff --git a/lib/puppet/pops/types/type_factory.rb b/lib/puppet/pops/types/type_factory.rb index a4d3b001a..c5f4bf253 100644 --- a/lib/puppet/pops/types/type_factory.rb +++ b/lib/puppet/pops/types/type_factory.rb @@ -1,448 +1,485 @@ # Helper module that makes creation of type objects simpler. # @api public # module Puppet::Pops::Types::TypeFactory - @type_calculator = Puppet::Pops::Types::TypeCalculator.new() - Types = Puppet::Pops::Types + @type_calculator = Types::TypeCalculator.singleton + @undef_t = Types::PUndefType.new # Produces the Integer type # @api public # def self.integer() Types::PIntegerType.new() end # Produces an Integer range type # @api public # def self.range(from, to) t = Types::PIntegerType.new() # optimize eq with symbol (faster when it is left) t.from = from unless (:default == from || from == 'default') t.to = to unless (:default == to || to == 'default') t end # Produces a Float range type # @api public # def self.float_range(from, to) t = Types::PFloatType.new() # optimize eq with symbol (faster when it is left) t.from = Float(from) unless :default == from || from.nil? t.to = Float(to) unless :default == to || to.nil? t end # Produces the Float type # @api public # def self.float() Types::PFloatType.new() end # Produces the Numeric type # @api public # def self.numeric() Types::PNumericType.new() end # Produces a string representation of the type # @api public # def self.label(t) @type_calculator.string(t) end # Produces the String type, optionally with specific string values # @api public # def self.string(*values) t = Types::PStringType.new() values.each {|v| t.addValues(v) } t end # Produces the Optional type, i.e. a short hand for Variant[T, Undef] + # If the given 'optional_type' argument is a String, then it will be + # converted into a String type that represents that string. + # + # @param optional_type [String,PAnyType,nil] the optional type + # @return [POptionalType] the created type + # + # @api public + # def self.optional(optional_type = nil) t = Types::POptionalType.new - t.optional_type = type_of(optional_type) + t.optional_type = optional_type.is_a?(String) ? string(optional_type) : type_of(optional_type) t end # Produces the Enum type, optionally with specific string values # @api public # def self.enum(*values) t = Types::PEnumType.new() values.each {|v| t.addValues(v) } t end # Produces the Variant type, optionally with the "one of" types # @api public # def self.variant(*types) t = Types::PVariantType.new() types.each {|v| t.addTypes(type_of(v)) } t end # Produces the Struct type, either a non parameterized instance representing - # all structs (i.e. all hashes) or a hash with a given set of keys of String - # type (names), bound to a value of a given type. Type may be a Ruby Class, a - # Puppet Type, or an instance from which the type is inferred. + # all structs (i.e. all hashes) or a hash with entries where the key is + # either a literal String, an Enum with one entry, or a String representing exactly one value. + # The key type may also be wrapped in a NotUndef or an Optional. + # + # The value can be a ruby class, a String (interpreted as the name of a ruby class) or + # a Type. # - def self.struct(name_type_hash = {}) + # @param hash [Hash] key => value hash + # @return [PStructType] the created Struct type + # + def self.struct(hash = {}) + tc = @type_calculator t = Types::PStructType.new - name_type_hash.map do |name, type| - elem = Types::PStructElement.new - if name.is_a?(String) && name.empty? - raise ArgumentError, "An empty String can not be used where a String[1, default] is expected" + t.elements = hash.map do |key_type, value_type| + value_type = type_of(value_type) + raise ArgumentError, 'Struct element value_type must be a Type' unless value_type.is_a?(Types::PAnyType) + + # TODO: Should have stricter name rule + if key_type.is_a?(String) + raise ArgumentError, 'Struct element key cannot be an empty String' if key_type.empty? + key_type = string(key_type) + # Must make key optional if the value can be Undef + key_type = optional(key_type) if tc.assignable?(value_type, @undef_t) + else + # assert that the key type is one of String[1], NotUndef[String[1]] and Optional[String[1]] + case key_type + when Types::PNotUndefType + # We can loose the NotUndef wrapper here since String[1] isn't optional anyway + key_type = key_type.type + s = key_type + when Types::POptionalType + s = key_type.optional_type + else + s = key_type + end + unless (s.is_a?(Puppet::Pops::Types::PStringType) || s.is_a?(Puppet::Pops::Types::PEnumType)) && s.values.size == 1 && !s.values[0].empty? + raise ArgumentError, 'Unable to extract a non-empty literal string from Struct member key type' if key_type.empty? + end end - elem.name = name - elem.type = type_of(type) + elem = Types::PStructElement.new + elem.key_type = key_type + elem.value_type = value_type elem - end.each {|elem| t.addElements(elem) } + end t end def self.tuple(*types) t = Types::PTupleType.new types.each {|elem| t.addTypes(type_of(elem)) } t end # Produces the Boolean type # @api public # def self.boolean() Types::PBooleanType.new() end # Produces the Any type # @api public # def self.any() Types::PAnyType.new() end # Produces the Regexp type # @param pattern [Regexp, String, nil] (nil) The regular expression object or # a regexp source string, or nil for bare type # @api public # def self.regexp(pattern = nil) t = Types::PRegexpType.new() if pattern t.pattern = pattern.is_a?(Regexp) ? pattern.inspect[1..-2] : pattern end t.regexp() unless pattern.nil? # compile pattern to catch errors t end def self.pattern(*regular_expressions) t = Types::PPatternType.new() regular_expressions.each do |re| case re when String re_T = Types::PRegexpType.new() re_T.pattern = re re_T.regexp() # compile it to catch errors t.addPatterns(re_T) when Regexp re_T = Types::PRegexpType.new() # Regep.to_s includes options user did not enter and does not escape source # to work either as a string or as a // regexp. The inspect method does a better # job, but includes the // re_T.pattern = re.inspect[1..-2] t.addPatterns(re_T) when Types::PRegexpType t.addPatterns(re.copy) when Types::PPatternType re.patterns.each do |p| t.addPatterns(p.copy) end else raise ArgumentError, "Only String, Regexp, Pattern-Type, and Regexp-Type are allowed: got '#{re.class}" end end t end # Produces the Literal type # @api public # def self.scalar() Types::PScalarType.new() end # Produces a CallableType matching all callables # @api public # def self.all_callables() return Puppet::Pops::Types::PCallableType.new end # Produces a Callable type with one signature without support for a block # Use #with_block, or #with_optional_block to add a block to the callable # If no parameters are given, the Callable will describe a signature # that does not accept parameters. To create a Callable that matches all callables # use {#all_callables}. # # The params is a list of types, where the three last entries may be # optionally followed by min, max count, and a Callable which is taken as the # block_type. # If neither min or max are specified the parameters must match exactly. # A min < params.size means that the difference are optional. # If max > params.size means that the last type repeats. # if max is :default, the max value is unbound (infinity). # # Params are given as a sequence of arguments to {#type_of}. # def self.callable(*params) if Puppet::Pops::Types::TypeCalculator.is_kind_of_callable?(params.last) last_callable = true end block_t = last_callable ? params.pop : nil # compute a size_type for the signature based on the two last parameters if is_range_parameter?(params[-2]) && is_range_parameter?(params[-1]) size_type = range(params[-2], params[-1]) params = params[0, params.size - 2] elsif is_range_parameter?(params[-1]) size_type = range(params[-1], :default) params = params[0, params.size - 1] end types = params.map {|p| type_of(p) } # If the specification requires types, and none were given, a Unit type is used if types.empty? && !size_type.nil? && size_type.range[1] > 0 types << Types::PUnitType.new end # create a signature callable_t = Types::PCallableType.new() tuple_t = tuple(*types) tuple_t.size_type = size_type unless size_type.nil? callable_t.param_types = tuple_t callable_t.block_type = block_t callable_t end def self.with_block(callable, *block_params) callable.block_type = callable(*block_params) callable end def self.with_optional_block(callable, *block_params) callable.block_type = optional(callable(*block_params)) callable end # Produces the abstract type Collection # @api public # def self.collection() Types::PCollectionType.new() end # Produces the Data type # @api public # def self.data() Types::PDataType.new() end # Creates an instance of the Undef type # @api public def self.undef() Types::PUndefType.new() end # Creates an instance of the Default type # @api public def self.default() Types::PDefaultType.new() end # Produces an instance of the abstract type PCatalogEntryType def self.catalog_entry() Types::PCatalogEntryType.new() end # Produces a PResourceType with a String type_name A PResourceType with a nil # or empty name is compatible with any other PResourceType. A PResourceType # with a given name is only compatible with a PResourceType with the same # name. (There is no resource-type subtyping in Puppet (yet)). # def self.resource(type_name = nil, title = nil) type = Types::PResourceType.new() type_name = type_name.type_name if type_name.is_a?(Types::PResourceType) type_name = type_name.downcase unless type_name.nil? type.type_name = type_name unless type_name.nil? || type_name =~ Puppet::Pops::Patterns::CLASSREF raise ArgumentError, "Illegal type name '#{type.type_name}'" end if type_name.nil? && !title.nil? raise ArgumentError, "The type name cannot be nil, if title is given" end type.title = title type end # Produces PHostClassType with a string class_name. A PHostClassType with # nil or empty name is compatible with any other PHostClassType. A # PHostClassType with a given name is only compatible with a PHostClassType # with the same name. # def self.host_class(class_name = nil) type = Types::PHostClassType.new() unless class_name.nil? type.class_name = class_name.sub(/^::/, '') end type end # Produces a type for Array[o] where o is either a type, or an instance for # which a type is inferred. # @api public # def self.array_of(o) type = Types::PArrayType.new() type.element_type = type_of(o) type end # Produces a type for Hash[Scalar, o] where o is either a type, or an # instance for which a type is inferred. # @api public # def self.hash_of(value, key = scalar()) type = Types::PHashType.new() type.key_type = type_of(key) type.element_type = type_of(value) type end # Produces a type for Array[Data] # @api public # def self.array_of_data() type = Types::PArrayType.new() type.element_type = data() type end # Produces a type for Hash[Scalar, Data] # @api public # def self.hash_of_data() type = Types::PHashType.new() type.key_type = scalar() type.element_type = data() type end # Produces a type for NotUndef[T] # The given 'inst_type' can be a string in which case it will be converted into # the type String[inst_type]. # # @param inst_type [Type,String] the type to qualify # @return [Puppet::Pops::Types::PNotUndefType] the NotUndef type # # @api public # def self.not_undef(inst_type = nil) type = Types::PNotUndefType.new() inst_type = string(inst_type) if inst_type.is_a?(String) type.type = inst_type type end # Produces a type for Type[T] # @api public # def self.type_type(inst_type = nil) type = Types::PType.new() type.type = inst_type type end # Produce a type corresponding to the class of given unless given is a # String, Class or a PAnyType. When a String is given this is taken as # a classname. # def self.type_of(o) if o.is_a?(Class) @type_calculator.type(o) elsif o.is_a?(Types::PAnyType) o elsif o.is_a?(String) Types::PRuntimeType.new(:runtime => :ruby, :runtime_type_name => o) else @type_calculator.infer_generic(o) end end # Produces a type for a class or infers a type for something that is not a # class # @note # To get the type for the class' class use `TypeCalculator.infer(c)` # # @overload ruby(o) # @param o [Class] produces the type corresponding to the class (e.g. # Integer becomes PIntegerType) # @overload ruby(o) # @param o [Object] produces the type corresponding to the instance class # (e.g. 3 becomes PIntegerType) # # @api public # def self.ruby(o) if o.is_a?(Class) @type_calculator.type(o) else Types::PRuntimeType.new(:runtime => :ruby, :runtime_type_name => o.class.name) end end # Generic creator of a RuntimeType["ruby"] - allows creating the Ruby type # with nil name, or String name. Also see ruby(o) which performs inference, # or mapps a Ruby Class to its name. # def self.ruby_type(class_name = nil) Types::PRuntimeType.new(:runtime => :ruby, :runtime_type_name => class_name) end # Generic creator of a RuntimeType - allows creating the type with nil or # String runtime_type_name. Also see ruby_type(o) and ruby(o). # def self.runtime(runtime=nil, runtime_type_name = nil) runtime = runtime.to_sym if runtime.is_a?(String) Types::PRuntimeType.new(:runtime => runtime, :runtime_type_name => runtime_type_name) end # Sets the accepted size range of a collection if something other than the # default 0 to Infinity is wanted. The semantics for from/to are the same as # for #range # def self.constrain_size(collection_t, from, to) collection_t.size_type = range(from, to) collection_t end # Returns true if the given type t is of valid range parameter type (integer # or literal default). def self.is_range_parameter?(t) t.is_a?(Integer) || t == 'default' || :default == t end end diff --git a/lib/puppet/pops/types/type_parser.rb b/lib/puppet/pops/types/type_parser.rb index 6fe75914e..036196dd7 100644 --- a/lib/puppet/pops/types/type_parser.rb +++ b/lib/puppet/pops/types/type_parser.rb @@ -1,487 +1,480 @@ # This class provides parsing of Type Specification from a string into the Type # Model that is produced by the Puppet::Pops::Types::TypeFactory. # # The Type Specifications that are parsed are the same as the stringified forms # of types produced by the {Puppet::Pops::Types::TypeCalculator TypeCalculator}. # # @api public class Puppet::Pops::Types::TypeParser # @api private TYPES = Puppet::Pops::Types::TypeFactory # @api public def initialize @parser = Puppet::Pops::Parser::Parser.new() @type_transformer = Puppet::Pops::Visitor.new(nil, "interpret", 0, 0) + @undef_t = TYPES.undef end # Produces a *puppet type* based on the given string. # # @example # parser.parse('Integer') # parser.parse('Array[String]') # parser.parse('Hash[Integer, Array[String]]') # # @param string [String] a string with the type expressed in stringified form as produced by the # {Puppet::Pops::Types::TypeCalculator#string TypeCalculator#string} method. # @return [Puppet::Pops::Types::PAnyType] a specialization of the PAnyType representing the type. # # @api public # def parse(string) # TODO: This state (@string) can be removed since the parse result of newer future parser # contains a Locator in its SourcePosAdapter and the Locator keeps the string. # This way, there is no difference between a parsed "string" and something that has been parsed # earlier and fed to 'interpret' # @string = string model = @parser.parse_string(@string) if model interpret(model.current) else raise_invalid_type_specification_error end end # @api private def interpret(ast) result = @type_transformer.visit_this_0(self, ast) result = result.body if result.is_a?(Puppet::Pops::Model::Program) raise_invalid_type_specification_error unless result.is_a?(Puppet::Pops::Types::PAnyType) result end # @api private def interpret_any(ast) @type_transformer.visit_this_0(self, ast) end # @api private def interpret_Object(o) raise_invalid_type_specification_error end # @api private def interpret_Program(o) interpret(o.body) end # @api private def interpret_QualifiedName(o) o.value end # @api private def interpret_LiteralString(o) o.value end def interpret_LiteralRegularExpression(o) o.value end # @api private def interpret_String(o) o end # @api private def interpret_LiteralDefault(o) :default end # @api private def interpret_LiteralInteger(o) o.value end # @api private def interpret_LiteralFloat(o) o.value end # @api private def interpret_LiteralHash(o) result = {} o.entries.each do |entry| result[@type_transformer.visit_this_0(self, entry.key)] = @type_transformer.visit_this_0(self, entry.value) end result end # @api private def interpret_QualifiedReference(name_ast) case name_ast.value when "integer" TYPES.integer when "float" TYPES.float when "numeric" TYPES.numeric when "string" TYPES.string when "enum" TYPES.enum when "boolean" TYPES.boolean when "pattern" TYPES.pattern when "regexp" TYPES.regexp when "data" TYPES.data when "array" TYPES.array_of_data when "hash" TYPES.hash_of_data when "class" TYPES.host_class() when "resource" TYPES.resource() when "collection" TYPES.collection() when "scalar" TYPES.scalar() when "catalogentry" TYPES.catalog_entry() when "undef" TYPES.undef() when "notundef" TYPES.not_undef() when "default" TYPES.default() when "any" TYPES.any() when "variant" TYPES.variant() when "optional" TYPES.optional() when "runtime" TYPES.runtime() when "type" TYPES.type_type() when "tuple" TYPES.tuple() when "struct" TYPES.struct() when "callable" # A generic callable as opposed to one that does not accept arguments TYPES.all_callables() else TYPES.resource(name_ast.value) end end # @api private def interpret_AccessExpression(parameterized_ast) parameters = parameterized_ast.keys.collect { |param| interpret_any(param) } unless parameterized_ast.left_expr.is_a?(Puppet::Pops::Model::QualifiedReference) raise_invalid_type_specification_error end case parameterized_ast.left_expr.value when "array" case parameters.size when 1 when 2 size_type = if parameters[1].is_a?(Puppet::Pops::Types::PIntegerType) parameters[1].copy else assert_range_parameter(parameters[1]) TYPES.range(parameters[1], :default) end when 3 assert_range_parameter(parameters[1]) assert_range_parameter(parameters[2]) size_type = TYPES.range(parameters[1], parameters[2]) else raise_invalid_parameters_error("Array", "1 to 3", parameters.size) end assert_type(parameters[0]) t = TYPES.array_of(parameters[0]) t.size_type = size_type if size_type t when "hash" result = case parameters.size when 2 assert_type(parameters[0]) assert_type(parameters[1]) TYPES.hash_of(parameters[1], parameters[0]) when 3 size_type = if parameters[2].is_a?(Puppet::Pops::Types::PIntegerType) parameters[2].copy else assert_range_parameter(parameters[2]) TYPES.range(parameters[2], :default) end assert_type(parameters[0]) assert_type(parameters[1]) TYPES.hash_of(parameters[1], parameters[0]) when 4 assert_range_parameter(parameters[2]) assert_range_parameter(parameters[3]) size_type = TYPES.range(parameters[2], parameters[3]) assert_type(parameters[0]) assert_type(parameters[1]) TYPES.hash_of(parameters[1], parameters[0]) else raise_invalid_parameters_error("Hash", "2 to 4", parameters.size) end result.size_type = size_type if size_type result when "collection" size_type = case parameters.size when 1 if parameters[0].is_a?(Puppet::Pops::Types::PIntegerType) parameters[0].copy else assert_range_parameter(parameters[0]) TYPES.range(parameters[0], :default) end when 2 assert_range_parameter(parameters[0]) assert_range_parameter(parameters[1]) TYPES.range(parameters[0], parameters[1]) else raise_invalid_parameters_error("Collection", "1 to 2", parameters.size) end result = TYPES.collection result.size_type = size_type result when "class" if parameters.size != 1 raise_invalid_parameters_error("Class", 1, parameters.size) end TYPES.host_class(parameters[0]) when "resource" if parameters.size == 1 TYPES.resource(parameters[0]) elsif parameters.size != 2 raise_invalid_parameters_error("Resource", "1 or 2", parameters.size) else TYPES.resource(parameters[0], parameters[1]) end when "regexp" # 1 parameter being a string, or regular expression raise_invalid_parameters_error("Regexp", "1", parameters.size) unless parameters.size == 1 TYPES.regexp(parameters[0]) when "enum" # 1..m parameters being strings raise_invalid_parameters_error("Enum", "1 or more", parameters.size) unless parameters.size >= 1 TYPES.enum(*parameters) when "pattern" # 1..m parameters being strings or regular expressions raise_invalid_parameters_error("Pattern", "1 or more", parameters.size) unless parameters.size >= 1 TYPES.pattern(*parameters) when "variant" # 1..m parameters being strings or regular expressions raise_invalid_parameters_error("Variant", "1 or more", parameters.size) unless parameters.size >= 1 TYPES.variant(*parameters) when "tuple" # 1..m parameters being types (last two optionally integer or literal default raise_invalid_parameters_error("Tuple", "1 or more", parameters.size) unless parameters.size >= 1 length = parameters.size if TYPES.is_range_parameter?(parameters[-2]) # min, max specification min = parameters[-2] min = (min == :default || min == 'default') ? 0 : min assert_range_parameter(parameters[-1]) max = parameters[-1] max = max == :default ? nil : max parameters = parameters[0, length-2] elsif TYPES.is_range_parameter?(parameters[-1]) min = parameters[-1] min = (min == :default || min == 'default') ? 0 : min max = nil parameters = parameters[0, length-1] end t = TYPES.tuple(*parameters) if min || max TYPES.constrain_size(t, min, max) end t when "callable" # 1..m parameters being types (last three optionally integer or literal default, and a callable) TYPES.callable(*parameters) when "struct" # 1..m parameters being types (last two optionally integer or literal default raise_invalid_parameters_error("Struct", "1", parameters.size) unless parameters.size == 1 - assert_struct_parameter(parameters[0]) - TYPES.struct(parameters[0]) + h = parameters[0] + raise_invalid_type_specification_error unless h.is_a?(Hash) + TYPES.struct(h) when "integer" if parameters.size == 1 case parameters[0] when Integer TYPES.range(parameters[0], parameters[0]) when :default TYPES.integer # unbound end elsif parameters.size != 2 raise_invalid_parameters_error("Integer", "1 or 2", parameters.size) else TYPES.range(parameters[0] == :default ? nil : parameters[0], parameters[1] == :default ? nil : parameters[1]) end when "float" if parameters.size == 1 case parameters[0] when Integer, Float TYPES.float_range(parameters[0], parameters[0]) when :default TYPES.float # unbound end elsif parameters.size != 2 raise_invalid_parameters_error("Float", "1 or 2", parameters.size) else TYPES.float_range(parameters[0] == :default ? nil : parameters[0], parameters[1] == :default ? nil : parameters[1]) end when "string" size_type = case parameters.size when 1 if parameters[0].is_a?(Puppet::Pops::Types::PIntegerType) parameters[0].copy else assert_range_parameter(parameters[0]) TYPES.range(parameters[0], :default) end when 2 assert_range_parameter(parameters[0]) assert_range_parameter(parameters[1]) TYPES.range(parameters[0], parameters[1]) else raise_invalid_parameters_error("String", "1 to 2", parameters.size) end result = TYPES.string result.size_type = size_type result when "optional" if parameters.size != 1 raise_invalid_parameters_error("Optional", 1, parameters.size) end assert_type(parameters[0]) TYPES.optional(parameters[0]) when "any", "data", "catalogentry", "boolean", "scalar", "undef", "numeric", "default" raise_unparameterized_type_error(parameterized_ast.left_expr) when "notundef" case parameters.size when 0 TYPES.not_undef when 1 param = parameters[0] assert_type(param) unless param.is_a?(String) TYPES.not_undef(param) else raise_invalid_parameters_error("NotUndef", "0 to 1", parameters.size) end when "type" if parameters.size != 1 raise_invalid_parameters_error("Type", 1, parameters.size) end assert_type(parameters[0]) TYPES.type_type(parameters[0]) when "runtime" raise_invalid_parameters_error("Runtime", "2", parameters.size) unless parameters.size == 2 TYPES.runtime(*parameters) else # It is a resource such a File['/tmp/foo'] type_name = parameterized_ast.left_expr.value if parameters.size != 1 raise_invalid_parameters_error(type_name.capitalize, 1, parameters.size) end TYPES.resource(type_name, parameters[0]) end end private def assert_type(t) raise_invalid_type_specification_error unless t.is_a?(Puppet::Pops::Types::PAnyType) true end def assert_range_parameter(t) raise_invalid_type_specification_error unless TYPES.is_range_parameter?(t) end - def assert_struct_parameter(h) - raise_invalid_type_specification_error unless h.is_a?(Hash) - h.each do |k,v| - # TODO: Should have stricter name rule - raise_invalid_type_specification_error unless k.is_a?(String) && !k.empty? - assert_type(v) - end - end - def raise_invalid_type_specification_error raise Puppet::ParseError, "The expression <#{@string}> is not a valid type specification." end def raise_invalid_parameters_error(type, required, given) raise Puppet::ParseError, "Invalid number of type parameters specified: #{type} requires #{required}, #{given} provided" end def raise_unparameterized_type_error(ast) raise Puppet::ParseError, "Not a parameterized type <#{original_text_of(ast)}>" end def raise_unknown_type_error(ast) raise Puppet::ParseError, "Unknown type <#{original_text_of(ast)}>" end def original_text_of(ast) position = Puppet::Pops::Adapters::SourcePosAdapter.adapt(ast) position.extract_text() end end diff --git a/lib/puppet/pops/types/types.rb b/lib/puppet/pops/types/types.rb index 96f0a68e9..da72fb5f0 100644 --- a/lib/puppet/pops/types/types.rb +++ b/lib/puppet/pops/types/types.rb @@ -1,412 +1,418 @@ require 'rgen/metamodel_builder' # The Types model is a model of Puppet Language types. # It consists of two parts; the meta-model expressed using RGen (in types_meta.rb) and this file which # mixes in the implementation. # # @api public # module Puppet::Pops require 'puppet/pops/types/types_meta' # TODO: See PUP-2978 for possible performance optimization # Mix in implementation part of the Bindings Module module Types # Used as end in a range INFINITY = 1.0 / 0.0 NEGATIVE_INFINITY = -INFINITY class TypeModelObject < RGen::MetamodelBuilder::MMBase include Puppet::Pops::Visitable include Puppet::Pops::Adaptable include Puppet::Pops::Containment end class PAnyType < TypeModelObject module ClassModule # Produce a deep copy of the type def copy Marshal.load(Marshal.dump(self)) end def hash self.class.hash end def ==(o) self.class == o.class end alias eql? == def to_s Puppet::Pops::Types::TypeCalculator.string(self) end end end class PNotUndefType < PAnyType module ClassModule def hash [self.class, type].hash end def ==(o) self.class == o.class && type == o.type end end end class PType < PAnyType module ClassModule def hash [self.class, type].hash end def ==(o) self.class == o.class && type == o.type end end end class PDataType < PAnyType module ClassModule def ==(o) self.class == o.class || o.class == PVariantType && o == Puppet::Pops::Types::TypeCalculator.data_variant() end end end class PVariantType < PAnyType module ClassModule def hash [self.class, Set.new(self.types)].hash end def ==(o) (self.class == o.class && Set.new(types) == Set.new(o.types)) || (o.class == PDataType && self == Puppet::Pops::Types::TypeCalculator.data_variant()) end end end class PEnumType < PScalarType module ClassModule def hash [self.class, Set.new(self.values)].hash end def ==(o) self.class == o.class && Set.new(values) == Set.new(o.values) end end end class PIntegerType < PNumericType module ClassModule # The integer type is enumerable when it defines a range include Enumerable # Returns Float.Infinity if one end of the range is unbound def size return INFINITY if from.nil? || to.nil? 1+(to-from).abs end # Returns the range as an array ordered so the smaller number is always first. # The number may be Infinity or -Infinity. def range f = from || NEGATIVE_INFINITY t = to || INFINITY if f < t [f, t] else [t,f] end end # Returns Enumerator if no block is given # Returns self if size is infinity (does not yield) def each return self.to_enum unless block_given? return nil if from.nil? || to.nil? if to < from from.downto(to) {|x| yield x } else from.upto(to) {|x| yield x } end end def hash [self.class, from, to].hash end def ==(o) self.class == o.class && from == o.from && to == o.to end end end class PFloatType < PNumericType module ClassModule def hash [self.class, from, to].hash end def ==(o) self.class == o.class && from == o.from && to == o.to end end end class PStringType < PScalarType module ClassModule def hash [self.class, self.size_type, Set.new(self.values)].hash end def ==(o) self.class == o.class && self.size_type == o.size_type && Set.new(values) == Set.new(o.values) end end end class PRegexpType < PScalarType module ClassModule def regexp_derived @_regexp = Regexp.new(pattern) unless @_regexp && @_regexp.source == pattern @_regexp end def hash [self.class, pattern].hash end def ==(o) self.class == o.class && pattern == o.pattern end end end class PPatternType < PScalarType module ClassModule def hash [self.class, Set.new(patterns)].hash end def ==(o) self.class == o.class && Set.new(patterns) == Set.new(o.patterns) end end end class PCollectionType < PAnyType module ClassModule # Returns an array with from (min) size to (max) size def size_range return [0, INFINITY] if size_type.nil? f = size_type.from || 0 t = size_type.to || INFINITY if f < t [f, t] else [t,f] end end def hash [self.class, element_type, size_type].hash end def ==(o) self.class == o.class && element_type == o.element_type && size_type == o.size_type end end end class PStructElement < TypeModelObject module ClassModule def hash - [self.class, type, name].hash + [self.class, value_type, key_type].hash + end + + def name + k = key_type + k = k.optional_type if k.is_a?(POptionalType) + k.values[0] end def ==(o) - self.class == o.class && type == o.type && name == o.name + self.class == o.class && value_type == o.value_type && key_type == o.key_type end end end class PStructType < PAnyType module ClassModule def hashed_elements_derived - @_hashed ||= elements.reduce({}) {|memo, e| memo[e.name] = e.type; memo } + @_hashed ||= elements.reduce({}) {|memo, e| memo[e.name] = e; memo } @_hashed end def clear_hashed_elements @_hashed = nil end def hash [self.class, Set.new(elements)].hash end def ==(o) self.class == o.class && hashed_elements == o.hashed_elements end end end class PTupleType < PAnyType module ClassModule # Returns the number of elements accepted [min, max] in the tuple def size_range types_size = types.size size_type.nil? ? [types_size, types_size] : size_type.range end # Returns the number of accepted occurrences [min, max] of the last type in the tuple # The defaults is [1,1] # def repeat_last_range types_size = types.size if size_type.nil? return [1, 1] end from, to = size_type.range() min = from - (types_size-1) min = min <= 0 ? 0 : min max = to - (types_size-1) [min, max] end def hash [self.class, size_type, Set.new(types)].hash end def ==(o) self.class == o.class && types == o.types && size_type == o.size_type end end end class PCallableType < PAnyType module ClassModule # Returns the number of accepted arguments [min, max] def size_range param_types.size_range end # Returns the number of accepted arguments for the last parameter type [min, max] # def last_range param_types.repeat_last_range end # Range [0,0], [0,1], or [1,1] for the block # def block_range case block_type when Puppet::Pops::Types::POptionalType [0,1] when Puppet::Pops::Types::PVariantType, Puppet::Pops::Types::PCallableType [1,1] else [0,0] end end def hash [self.class, Set.new(param_types), block_type].hash end def ==(o) self.class == o.class && args_type == o.args_type && block_type == o.block_type end end end class PArrayType < PCollectionType module ClassModule def hash [self.class, self.element_type, self.size_type].hash end def ==(o) self.class == o.class && self.element_type == o.element_type && self.size_type == o.size_type end end end class PHashType < PCollectionType module ClassModule def hash [self.class, key_type, self.element_type, self.size_type].hash end def ==(o) self.class == o.class && key_type == o.key_type && self.element_type == o.element_type && self.size_type == o.size_type end def is_the_empty_hash? size_type.is_a?(PIntegerType) && size_type.from == 0 && size_type.to == 0 && key_type.is_a?(PUndefType) && element_type.is_a?(PUndefType) end end end class PRuntimeType < PAnyType module ClassModule def hash [self.class, runtime, runtime_type_name].hash end def ==(o) self.class == o.class && runtime == o.runtime && runtime_type_name == o.runtime_type_name end end end class PHostClassType < PCatalogEntryType module ClassModule def hash [self.class, class_name].hash end def ==(o) self.class == o.class && class_name == o.class_name end end end class PResourceType < PCatalogEntryType module ClassModule def hash [self.class, type_name, title].hash end def ==(o) self.class == o.class && type_name == o.type_name && title == o.title end end end class POptionalType < PAnyType module ClassModule def hash [self.class, optional_type].hash end def ==(o) self.class == o.class && optional_type == o.optional_type end end end end end diff --git a/lib/puppet/pops/types/types_meta.rb b/lib/puppet/pops/types/types_meta.rb index f3fd1084f..8394190d9 100644 --- a/lib/puppet/pops/types/types_meta.rb +++ b/lib/puppet/pops/types/types_meta.rb @@ -1,232 +1,234 @@ require 'rgen/metamodel_builder' # The Types model is a model of Puppet Language types. # # The exact relationship between types is not visible in this model wrt. the PDataType which is an abstraction # of Scalar, Array[Data], and Hash[Scalar, Data] nested to any depth. This means it is not possible to # infer the type by simply looking at the inheritance hierarchy. The {Puppet::Pops::Types::TypeCalculator} should # be used to answer questions about types. The {Puppet::Pops::Types::TypeFactory} should be used to create an instance # of a type whenever one is needed. # # The implementation of the Types model contains methods that are required for the type objects to behave as # expected when comparing them and using them as keys in hashes. (No other logic is, or should be included directly in # the model's classes). # # @api public # module Puppet::Pops::Types extend RGen::MetamodelBuilder::ModuleExtension class TypeModelObject < RGen::MetamodelBuilder::MMBase abstract end # Base type for all types except {Puppet::Pops::Types::PType PType}, the type of types. # @api public # class PAnyType < TypeModelObject end # A type that is assignable from the same types as its contained `type` except the # types assignable from {Puppet::Pops::Types::PUndefType} # # @api public # class PNotUndefType < PAnyType contains_one_uni 'type', PAnyType end # The type of types. # @api public # class PType < PAnyType contains_one_uni 'type', PAnyType end # @api public # class PUndefType < PAnyType end # A type private to the type system that describes "ignored type" - i.e. "I am what you are" # @api private # class PUnitType < PAnyType end # @api public # class PDefaultType < PAnyType end # A flexible data type, being assignable to its subtypes as well as PArrayType and PHashType with element type assignable to PDataType. # # @api public # class PDataType < PAnyType end # A flexible type describing an any? of other types # @api public # class PVariantType < PAnyType contains_many_uni 'types', PAnyType, :lowerBound => 1 end # Type that is PDataType compatible, but is not a PCollectionType. # @api public # class PScalarType < PAnyType end # A string type describing the set of strings having one of the given values # @api public # class PEnumType < PScalarType has_many_attr 'values', String, :lowerBound => 1 end # @api public # class PNumericType < PScalarType end # @api public # class PIntegerType < PNumericType has_attr 'from', Integer, :lowerBound => 0 has_attr 'to', Integer, :lowerBound => 0 end # @api public # class PFloatType < PNumericType has_attr 'from', Float, :lowerBound => 0 has_attr 'to', Float, :lowerBound => 0 end # @api public # class PStringType < PScalarType has_many_attr 'values', String, :lowerBound => 0, :upperBound => -1, :unique => true contains_one_uni 'size_type', PIntegerType end # @api public # class PRegexpType < PScalarType has_attr 'pattern', String, :lowerBound => 1 has_attr 'regexp', Object, :derived => true end # Represents a subtype of String that narrows the string to those matching the patterns # If specified without a pattern it is basically the same as the String type. # # @api public # class PPatternType < PScalarType contains_many_uni 'patterns', PRegexpType end # @api public # class PBooleanType < PScalarType end # @api public # class PCollectionType < PAnyType contains_one_uni 'element_type', PAnyType contains_one_uni 'size_type', PIntegerType end # @api public # class PStructElement < TypeModelObject - has_attr 'name', String, :lowerBound => 1 - contains_one_uni 'type', PAnyType + # key_type must be either String[1] or Optional[String[1]] and the String[1] must + # have a values collection with exactly one element + contains_one_uni 'key_type', PAnyType, :lowerBound => 1 + contains_one_uni 'value_type', PAnyType end # @api public # class PStructType < PAnyType contains_many_uni 'elements', PStructElement, :lowerBound => 1 has_attr 'hashed_elements', Object, :derived => true end # @api public # class PTupleType < PAnyType contains_many_uni 'types', PAnyType, :lowerBound => 1 # If set, describes min and max required of the given types - if max > size of # types, the last type entry repeats # contains_one_uni 'size_type', PIntegerType, :lowerBound => 0 end # @api public # class PCallableType < PAnyType # Types of parameters as a Tuple with required/optional count, or an Integer with min (required), max count contains_one_uni 'param_types', PAnyType, :lowerBound => 1 # Although being an abstract type reference, only Callable, or all Callables wrapped in # Optional or Variant are supported # If not set, the meaning is that block is not supported. # contains_one_uni 'block_type', PAnyType, :lowerBound => 0 end # @api public # class PArrayType < PCollectionType end # @api public # class PHashType < PCollectionType contains_one_uni 'key_type', PAnyType end RuntimeEnum = RGen::MetamodelBuilder::DataTypes::Enum.new( :name => 'RuntimeEnum', :literals => [:'ruby', ]) # @api public # class PRuntimeType < PAnyType has_attr 'runtime', RuntimeEnum, :lowerBound => 1 has_attr 'runtime_type_name', String end # Abstract representation of a type that can be placed in a Catalog. # @api public # class PCatalogEntryType < PAnyType end # Represents a (host-) class in the Puppet Language. # @api public # class PHostClassType < PCatalogEntryType has_attr 'class_name', String end # Represents a Resource Type in the Puppet Language # @api public # class PResourceType < PCatalogEntryType has_attr 'type_name', String has_attr 'title', String end # Represents a type that accept PUndefType instead of the type parameter # required_type - is a short hand for Variant[T, Undef] # @api public # class POptionalType < PAnyType contains_one_uni 'optional_type', PAnyType end end diff --git a/spec/unit/pops/types/type_calculator_spec.rb b/spec/unit/pops/types/type_calculator_spec.rb index 77d427ee0..807555c36 100644 --- a/spec/unit/pops/types/type_calculator_spec.rb +++ b/spec/unit/pops/types/type_calculator_spec.rb @@ -1,2131 +1,2180 @@ require 'spec_helper' require 'puppet/pops' describe 'The type calculator' do let(:calculator) { Puppet::Pops::Types::TypeCalculator.new() } def range_t(from, to) t = Puppet::Pops::Types::PIntegerType.new t.from = from t.to = to t end def constrained_t(t, from, to) Puppet::Pops::Types::TypeFactory.constrain_size(t, from, to) end def pattern_t(*patterns) Puppet::Pops::Types::TypeFactory.pattern(*patterns) end def regexp_t(pattern) Puppet::Pops::Types::TypeFactory.regexp(pattern) end def string_t(*strings) Puppet::Pops::Types::TypeFactory.string(*strings) end def callable_t(*params) Puppet::Pops::Types::TypeFactory.callable(*params) end def all_callables_t(*params) Puppet::Pops::Types::TypeFactory.all_callables() end def with_block_t(callable_t, *params) Puppet::Pops::Types::TypeFactory.with_block(callable_t, *params) end def with_optional_block_t(callable_t, *params) Puppet::Pops::Types::TypeFactory.with_optional_block(callable_t, *params) end def enum_t(*strings) Puppet::Pops::Types::TypeFactory.enum(*strings) end def variant_t(*types) Puppet::Pops::Types::TypeFactory.variant(*types) end def integer_t() Puppet::Pops::Types::TypeFactory.integer() end def array_t(t) Puppet::Pops::Types::TypeFactory.array_of(t) end def hash_t(k,v) Puppet::Pops::Types::TypeFactory.hash_of(v, k) end def data_t() Puppet::Pops::Types::TypeFactory.data() end def factory() Puppet::Pops::Types::TypeFactory end def collection_t() Puppet::Pops::Types::TypeFactory.collection() end def tuple_t(*types) Puppet::Pops::Types::TypeFactory.tuple(*types) end def struct_t(type_hash) Puppet::Pops::Types::TypeFactory.struct(type_hash) end def object_t Puppet::Pops::Types::TypeFactory.any() end def optional_t(t) Puppet::Pops::Types::TypeFactory.optional(t) end def not_undef_t(t = nil) Puppet::Pops::Types::TypeFactory.not_undef(t) end def undef_t Puppet::Pops::Types::TypeFactory.undef end def unit_t # Cannot be created via factory, the type is private to the type system Puppet::Pops::Types::PUnitType.new end def types Puppet::Pops::Types end shared_context "types_setup" do # Do not include the special type Unit in this list def all_types [ Puppet::Pops::Types::PAnyType, Puppet::Pops::Types::PUndefType, Puppet::Pops::Types::PNotUndefType, Puppet::Pops::Types::PDataType, Puppet::Pops::Types::PScalarType, Puppet::Pops::Types::PStringType, Puppet::Pops::Types::PNumericType, Puppet::Pops::Types::PIntegerType, Puppet::Pops::Types::PFloatType, Puppet::Pops::Types::PRegexpType, Puppet::Pops::Types::PBooleanType, Puppet::Pops::Types::PCollectionType, Puppet::Pops::Types::PArrayType, Puppet::Pops::Types::PHashType, Puppet::Pops::Types::PRuntimeType, Puppet::Pops::Types::PHostClassType, Puppet::Pops::Types::PResourceType, Puppet::Pops::Types::PPatternType, Puppet::Pops::Types::PEnumType, Puppet::Pops::Types::PVariantType, Puppet::Pops::Types::PStructType, Puppet::Pops::Types::PTupleType, Puppet::Pops::Types::PCallableType, Puppet::Pops::Types::PType, Puppet::Pops::Types::POptionalType, Puppet::Pops::Types::PDefaultType, ] end def scalar_types # PVariantType is also scalar, if its types are all Scalar [ Puppet::Pops::Types::PScalarType, Puppet::Pops::Types::PStringType, Puppet::Pops::Types::PNumericType, Puppet::Pops::Types::PIntegerType, Puppet::Pops::Types::PFloatType, Puppet::Pops::Types::PRegexpType, Puppet::Pops::Types::PBooleanType, Puppet::Pops::Types::PPatternType, Puppet::Pops::Types::PEnumType, ] end def numeric_types # PVariantType is also numeric, if its types are all numeric [ Puppet::Pops::Types::PNumericType, Puppet::Pops::Types::PIntegerType, Puppet::Pops::Types::PFloatType, ] end def string_types # PVariantType is also string type, if its types are all compatible [ Puppet::Pops::Types::PStringType, Puppet::Pops::Types::PPatternType, Puppet::Pops::Types::PEnumType, ] end def collection_types # PVariantType is also string type, if its types are all compatible [ Puppet::Pops::Types::PCollectionType, Puppet::Pops::Types::PHashType, Puppet::Pops::Types::PArrayType, Puppet::Pops::Types::PStructType, Puppet::Pops::Types::PTupleType, ] end def data_compatible_types result = scalar_types result << Puppet::Pops::Types::PDataType result << array_t(types::PDataType.new) result << types::TypeFactory.hash_of_data result << Puppet::Pops::Types::PUndefType result << not_undef_t(types::PDataType.new) tmp = tuple_t(types::PDataType.new) result << (tmp) tmp.size_type = range_t(0, nil) result end def type_from_class(c) c.is_a?(Class) ? c.new : c end end context 'when inferring ruby' do it 'fixnum translates to PIntegerType' do calculator.infer(1).class.should == Puppet::Pops::Types::PIntegerType end it 'large fixnum (or bignum depending on architecture) translates to PIntegerType' do calculator.infer(2**33).class.should == Puppet::Pops::Types::PIntegerType end it 'float translates to PFloatType' do calculator.infer(1.3).class.should == Puppet::Pops::Types::PFloatType end it 'string translates to PStringType' do calculator.infer('foo').class.should == Puppet::Pops::Types::PStringType end it 'inferred string type knows the string value' do t = calculator.infer('foo') t.class.should == Puppet::Pops::Types::PStringType t.values.should == ['foo'] end it 'boolean true translates to PBooleanType' do calculator.infer(true).class.should == Puppet::Pops::Types::PBooleanType end it 'boolean false translates to PBooleanType' do calculator.infer(false).class.should == Puppet::Pops::Types::PBooleanType end it 'regexp translates to PRegexpType' do calculator.infer(/^a regular expression$/).class.should == Puppet::Pops::Types::PRegexpType end it 'nil translates to PUndefType' do calculator.infer(nil).class.should == Puppet::Pops::Types::PUndefType end it ':undef translates to PRuntimeType' do calculator.infer(:undef).class.should == Puppet::Pops::Types::PRuntimeType end it 'an instance of class Foo translates to PRuntimeType[ruby, Foo]' do class Foo end t = calculator.infer(Foo.new) t.class.should == Puppet::Pops::Types::PRuntimeType t.runtime.should == :ruby t.runtime_type_name.should == 'Foo' end context 'array' do it 'translates to PArrayType' do calculator.infer([1,2]).class.should == Puppet::Pops::Types::PArrayType end it 'with fixnum values translates to PArrayType[PIntegerType]' do calculator.infer([1,2]).element_type.class.should == Puppet::Pops::Types::PIntegerType end it 'with 32 and 64 bit integer values translates to PArrayType[PIntegerType]' do calculator.infer([1,2**33]).element_type.class.should == Puppet::Pops::Types::PIntegerType end it 'Range of integer values are computed' do t = calculator.infer([-3,0,42]).element_type t.class.should == Puppet::Pops::Types::PIntegerType t.from.should == -3 t.to.should == 42 end it "Compound string values are computed" do t = calculator.infer(['a','b', 'c']).element_type t.class.should == Puppet::Pops::Types::PStringType t.values.should == ['a', 'b', 'c'] end it 'with fixnum and float values translates to PArrayType[PNumericType]' do calculator.infer([1,2.0]).element_type.class.should == Puppet::Pops::Types::PNumericType end it 'with fixnum and string values translates to PArrayType[PScalarType]' do calculator.infer([1,'two']).element_type.class.should == Puppet::Pops::Types::PScalarType end it 'with float and string values translates to PArrayType[PScalarType]' do calculator.infer([1.0,'two']).element_type.class.should == Puppet::Pops::Types::PScalarType end it 'with fixnum, float, and string values translates to PArrayType[PScalarType]' do calculator.infer([1, 2.0,'two']).element_type.class.should == Puppet::Pops::Types::PScalarType end it 'with fixnum and regexp values translates to PArrayType[PScalarType]' do calculator.infer([1, /two/]).element_type.class.should == Puppet::Pops::Types::PScalarType end it 'with string and regexp values translates to PArrayType[PScalarType]' do calculator.infer(['one', /two/]).element_type.class.should == Puppet::Pops::Types::PScalarType end it 'with string and symbol values translates to PArrayType[PAnyType]' do calculator.infer(['one', :two]).element_type.class.should == Puppet::Pops::Types::PAnyType end it 'with fixnum and nil values translates to PArrayType[PIntegerType]' do calculator.infer([1, nil]).element_type.class.should == Puppet::Pops::Types::PIntegerType end it 'with arrays of string values translates to PArrayType[PArrayType[PStringType]]' do et = calculator.infer([['first' 'array'], ['second','array']]) et.class.should == Puppet::Pops::Types::PArrayType et = et.element_type et.class.should == Puppet::Pops::Types::PArrayType et = et.element_type et.class.should == Puppet::Pops::Types::PStringType end it 'with array of string values and array of fixnums translates to PArrayType[PArrayType[PScalarType]]' do et = calculator.infer([['first' 'array'], [1,2]]) et.class.should == Puppet::Pops::Types::PArrayType et = et.element_type et.class.should == Puppet::Pops::Types::PArrayType et = et.element_type et.class.should == Puppet::Pops::Types::PScalarType end it 'with hashes of string values translates to PArrayType[PHashType[PStringType]]' do et = calculator.infer([{:first => 'first', :second => 'second' }, {:first => 'first', :second => 'second' }]) et.class.should == Puppet::Pops::Types::PArrayType et = et.element_type et.class.should == Puppet::Pops::Types::PHashType et = et.element_type et.class.should == Puppet::Pops::Types::PStringType end it 'with hash of string values and hash of fixnums translates to PArrayType[PHashType[PScalarType]]' do et = calculator.infer([{:first => 'first', :second => 'second' }, {:first => 1, :second => 2 }]) et.class.should == Puppet::Pops::Types::PArrayType et = et.element_type et.class.should == Puppet::Pops::Types::PHashType et = et.element_type et.class.should == Puppet::Pops::Types::PScalarType end end context 'hash' do it 'translates to PHashType' do calculator.infer({:first => 1, :second => 2}).class.should == Puppet::Pops::Types::PHashType end it 'with symbolic keys translates to PHashType[PRuntimeType[ruby, Symbol], value]' do k = calculator.infer({:first => 1, :second => 2}).key_type k.class.should == Puppet::Pops::Types::PRuntimeType k.runtime.should == :ruby k.runtime_type_name.should == 'Symbol' end it 'with string keys translates to PHashType[PStringType, value]' do calculator.infer({'first' => 1, 'second' => 2}).key_type.class.should == Puppet::Pops::Types::PStringType end it 'with fixnum values translates to PHashType[key, PIntegerType]' do calculator.infer({:first => 1, :second => 2}).element_type.class.should == Puppet::Pops::Types::PIntegerType end it 'when empty infers a type that answers true to is_the_empty_hash?' do expect(calculator.infer({}).is_the_empty_hash?).to be_true expect(calculator.infer_set({}).is_the_empty_hash?).to be_true end it 'when empty is assignable to any PHashType' do expect(calculator.assignable?(hash_t(string_t, string_t), calculator.infer({}))).to be_true end it 'when empty is not assignable to a PHashType with from size > 0' do expect(calculator.assignable?(constrained_t(hash_t(string_t,string_t), 1, 1), calculator.infer({}))).to be_false end context 'using infer_set' do it "with 'first' and 'second' keys translates to PStructType[{first=>value,second=>value}]" do t = calculator.infer_set({'first' => 1, 'second' => 2}) expect(t.class).to eq(Puppet::Pops::Types::PStructType) expect(t.elements.size).to eq(2) expect(t.elements.map { |e| e.name }.sort).to eq(['first', 'second']) end it 'with string keys and string and array values translates to PStructType[{key1=>PStringType,key2=>PTupleType}]' do t = calculator.infer_set({ 'mode' => 'read', 'path' => ['foo', 'fee' ] }) expect(t.class).to eq(Puppet::Pops::Types::PStructType) expect(t.elements.size).to eq(2) - els = t.elements.map { |e| e.type }.sort {|a,b| a.to_s <=> b.to_s } + els = t.elements.map { |e| e.value_type }.sort {|a,b| a.to_s <=> b.to_s } els[0].class.should == Puppet::Pops::Types::PStringType els[1].class.should == Puppet::Pops::Types::PTupleType end it 'with mixed string and non-string keys translates to PHashType' do t = calculator.infer_set({ 1 => 'first', 'second' => 'second' }) expect(t.class).to eq(Puppet::Pops::Types::PHashType) end it 'with empty string keys translates to PHashType' do t = calculator.infer_set({ '' => 'first', 'second' => 'second' }) expect(t.class).to eq(Puppet::Pops::Types::PHashType) end end end end context 'patterns' do it "constructs a PPatternType" do t = pattern_t('a(b)c') t.class.should == Puppet::Pops::Types::PPatternType t.patterns.size.should == 1 t.patterns[0].class.should == Puppet::Pops::Types::PRegexpType t.patterns[0].pattern.should == 'a(b)c' t.patterns[0].regexp.match('abc')[1].should == 'b' end it "constructs a PStringType with multiple strings" do t = string_t('a', 'b', 'c', 'abc') t.values.should == ['a', 'b', 'c', 'abc'] end end # Deal with cases not covered by computing common type context 'when computing common type' do it 'computes given resource type commonality' do r1 = Puppet::Pops::Types::PResourceType.new() r1.type_name = 'File' r2 = Puppet::Pops::Types::PResourceType.new() r2.type_name = 'File' calculator.string(calculator.common_type(r1, r2)).should == "File" r2 = Puppet::Pops::Types::PResourceType.new() r2.type_name = 'File' r2.title = '/tmp/foo' calculator.string(calculator.common_type(r1, r2)).should == "File" r1 = Puppet::Pops::Types::PResourceType.new() r1.type_name = 'File' r1.title = '/tmp/foo' calculator.string(calculator.common_type(r1, r2)).should == "File['/tmp/foo']" r1 = Puppet::Pops::Types::PResourceType.new() r1.type_name = 'File' r1.title = '/tmp/bar' calculator.string(calculator.common_type(r1, r2)).should == "File" r2 = Puppet::Pops::Types::PResourceType.new() r2.type_name = 'Package' r2.title = 'apache' calculator.string(calculator.common_type(r1, r2)).should == "Resource" end it 'computes given hostclass type commonality' do r1 = Puppet::Pops::Types::PHostClassType.new() r1.class_name = 'foo' r2 = Puppet::Pops::Types::PHostClassType.new() r2.class_name = 'foo' calculator.string(calculator.common_type(r1, r2)).should == "Class[foo]" r2 = Puppet::Pops::Types::PHostClassType.new() r2.class_name = 'bar' calculator.string(calculator.common_type(r1, r2)).should == "Class" r2 = Puppet::Pops::Types::PHostClassType.new() calculator.string(calculator.common_type(r1, r2)).should == "Class" r1 = Puppet::Pops::Types::PHostClassType.new() calculator.string(calculator.common_type(r1, r2)).should == "Class" end context 'of strings' do it 'computes commonality' do t1 = string_t('abc') t2 = string_t('xyz') common_t = calculator.common_type(t1,t2) expect(common_t.class).to eq(Puppet::Pops::Types::PStringType) expect(common_t.values).to eq(['abc', 'xyz']) end it 'computes common size_type' do t1 = string_t t1.size_type = range_t(3,6) t2 = string_t t2.size_type = range_t(2,4) common_t = calculator.common_type(t1,t2) expect(common_t.class).to eq(Puppet::Pops::Types::PStringType) expect(common_t.size_type).to eq(range_t(2,6)) end it 'computes common size_type to be undef when one of the types has no size_type' do t1 = string_t t2 = string_t t2.size_type = range_t(2,4) common_t = calculator.common_type(t1,t2) expect(common_t.class).to eq(Puppet::Pops::Types::PStringType) expect(common_t.size_type).to be_nil end it 'computes values to be empty if the one has empty values' do t1 = string_t('apa') t1.size_type = range_t(3,6) t2 = string_t t2.size_type = range_t(2,4) common_t = calculator.common_type(t1,t2) expect(common_t.class).to eq(Puppet::Pops::Types::PStringType) expect(common_t.values).to be_empty end end it 'computes pattern commonality' do t1 = pattern_t('abc') t2 = pattern_t('xyz') common_t = calculator.common_type(t1,t2) common_t.class.should == Puppet::Pops::Types::PPatternType common_t.patterns.map { |pr| pr.pattern }.should == ['abc', 'xyz'] calculator.string(common_t).should == "Pattern[/abc/, /xyz/]" end it 'computes enum commonality to value set sum' do t1 = enum_t('a', 'b', 'c') t2 = enum_t('x', 'y', 'z') common_t = calculator.common_type(t1, t2) common_t.should == enum_t('a', 'b', 'c', 'x', 'y', 'z') end it 'computed variant commonality to type union where added types are not sub-types' do a_t1 = integer_t() a_t2 = enum_t('b') v_a = variant_t(a_t1, a_t2) b_t1 = enum_t('a') v_b = variant_t(b_t1) common_t = calculator.common_type(v_a, v_b) common_t.class.should == Puppet::Pops::Types::PVariantType Set.new(common_t.types).should == Set.new([a_t1, a_t2, b_t1]) end it 'computed variant commonality to type union where added types are sub-types' do a_t1 = integer_t() a_t2 = string_t() v_a = variant_t(a_t1, a_t2) b_t1 = enum_t('a') v_b = variant_t(b_t1) common_t = calculator.common_type(v_a, v_b) common_t.class.should == Puppet::Pops::Types::PVariantType Set.new(common_t.types).should == Set.new([a_t1, a_t2]) end context "of callables" do it 'incompatible instances => generic callable' do t1 = callable_t(String) t2 = callable_t(Integer) common_t = calculator.common_type(t1, t2) expect(common_t.class).to be(Puppet::Pops::Types::PCallableType) expect(common_t.param_types).to be_nil expect(common_t.block_type).to be_nil end it 'compatible instances => the most specific' do t1 = callable_t(String) scalar_t = Puppet::Pops::Types::PScalarType.new t2 = callable_t(scalar_t) common_t = calculator.common_type(t1, t2) expect(common_t.class).to be(Puppet::Pops::Types::PCallableType) expect(common_t.param_types.class).to be(Puppet::Pops::Types::PTupleType) expect(common_t.param_types.types).to eql([string_t]) expect(common_t.block_type).to be_nil end it 'block_type is included in the check (incompatible block)' do t1 = with_block_t(callable_t(String), String) t2 = with_block_t(callable_t(String), Integer) common_t = calculator.common_type(t1, t2) expect(common_t.class).to be(Puppet::Pops::Types::PCallableType) expect(common_t.param_types).to be_nil expect(common_t.block_type).to be_nil end it 'block_type is included in the check (compatible block)' do t1 = with_block_t(callable_t(String), String) scalar_t = Puppet::Pops::Types::PScalarType.new t2 = with_block_t(callable_t(String), scalar_t) common_t = calculator.common_type(t1, t2) expect(common_t.param_types.class).to be(Puppet::Pops::Types::PTupleType) expect(common_t.block_type).to eql(callable_t(scalar_t)) end end end context 'computes assignability' do include_context "types_setup" it 'such that all types are assignable to themselves' do all_types.each do |tc| t = tc.new expect(t).to be_assignable_to(t) end end context 'for Unit, such that' do it 'all types are assignable to Unit' do t = Puppet::Pops::Types::PUnitType.new() all_types.each { |t2| t2.new.should be_assignable_to(t) } end it 'Unit is assignable to all other types' do t = Puppet::Pops::Types::PUnitType.new() all_types.each { |t2| t.should be_assignable_to(t2.new) } end it 'Unit is assignable to Unit' do t = Puppet::Pops::Types::PUnitType.new() t2 = Puppet::Pops::Types::PUnitType.new() t.should be_assignable_to(t2) end end context "for Any, such that" do it 'all types are assignable to Any' do t = Puppet::Pops::Types::PAnyType.new() all_types.each { |t2| t2.new.should be_assignable_to(t) } end it 'Any is not assignable to anything but Any and Optional (implied Optional[Any])' do tested_types = all_types() - [Puppet::Pops::Types::PAnyType, Puppet::Pops::Types::POptionalType] t = Puppet::Pops::Types::PAnyType.new() tested_types.each { |t2| t.should_not be_assignable_to(t2.new) } end end context "for NotUndef, such that" do it 'all types except types assignable from Undef are assignable to NotUndef' do t = not_undef_t tc = Puppet::Pops::Types::TypeCalculator.singleton undef_t = Puppet::Pops::Types::PUndefType.new() all_types().each do |c| t2 = c.new if tc.assignable?(t2, undef_t) expect(t2).not_to be_assignable_to(t) else expect(t2).to be_assignable_to(t) end end end it 'type NotUndef[T] is assignable from T unless T is assignable from Undef ' do tc = Puppet::Pops::Types::TypeCalculator.singleton undef_t = Puppet::Pops::Types::PUndefType.new() all_types().select do |c| t2 = c.new not_undef_t = not_undef_t(t2) if tc.assignable?(t2, undef_t) expect(t2).not_to be_assignable_to(not_undef_t) else expect(t2).to be_assignable_to(not_undef_t) end end end it 'type T is assignable from NotUndef[T] unless T is assignable from Undef' do tc = Puppet::Pops::Types::TypeCalculator.singleton undef_t = Puppet::Pops::Types::PUndefType.new() all_types().select do |c| t2 = c.new not_undef_t = not_undef_t(t2) unless tc.assignable?(t2, undef_t) expect(not_undef_t).to be_assignable_to(t2) end end end end context "for Data, such that" do it 'all scalars + array and hash are assignable to Data' do t = Puppet::Pops::Types::PDataType.new() data_compatible_types.each { |t2| type_from_class(t2).should be_assignable_to(t) } end it 'a Variant of scalar, hash, or array is assignable to Data' do t = Puppet::Pops::Types::PDataType.new() data_compatible_types.each { |t2| variant_t(type_from_class(t2)).should be_assignable_to(t) } end it 'Data is not assignable to any of its subtypes' do t = Puppet::Pops::Types::PDataType.new() types_to_test = data_compatible_types- [Puppet::Pops::Types::PDataType] types_to_test.each {|t2| t.should_not be_assignable_to(type_from_class(t2)) } end it 'Data is not assignable to a Variant of Data subtype' do t = Puppet::Pops::Types::PDataType.new() types_to_test = data_compatible_types- [Puppet::Pops::Types::PDataType] types_to_test.each { |t2| t.should_not be_assignable_to(variant_t(type_from_class(t2))) } end it 'Data is not assignable to any disjunct type' do tested_types = all_types - [Puppet::Pops::Types::PAnyType, Puppet::Pops::Types::POptionalType, Puppet::Pops::Types::PDataType] - scalar_types t = Puppet::Pops::Types::PDataType.new() tested_types.each {|t2| t.should_not be_assignable_to(t2.new) } end end context 'for Variant, such that' do it 'it is assignable to a type if all contained types are assignable to that type' do v = variant_t(range_t(10, 12),range_t(14, 20)) v.should be_assignable_to(integer_t) v.should be_assignable_to(range_t(10, 20)) # test that both types are assignable to one of the variants OK v.should be_assignable_to(variant_t(range_t(10, 20), range_t(30, 40))) # test where each type is assignable to different types in a variant is OK v.should be_assignable_to(variant_t(range_t(10, 13), range_t(14, 40))) # not acceptable v.should_not be_assignable_to(range_t(0, 4)) v.should_not be_assignable_to(string_t) end end context "for Scalar, such that" do it "all scalars are assignable to Scalar" do t = Puppet::Pops::Types::PScalarType.new() scalar_types.each {|t2| t2.new.should be_assignable_to(t) } end it 'Scalar is not assignable to any of its subtypes' do t = Puppet::Pops::Types::PScalarType.new() types_to_test = scalar_types - [Puppet::Pops::Types::PScalarType] types_to_test.each {|t2| t.should_not be_assignable_to(t2.new) } end it 'Scalar is not assignable to any disjunct type' do tested_types = all_types - [Puppet::Pops::Types::PAnyType, Puppet::Pops::Types::POptionalType, Puppet::Pops::Types::PNotUndefType, Puppet::Pops::Types::PDataType] - scalar_types t = Puppet::Pops::Types::PScalarType.new() tested_types.each {|t2| t.should_not be_assignable_to(t2.new) } end end context "for Numeric, such that" do it "all numerics are assignable to Numeric" do t = Puppet::Pops::Types::PNumericType.new() numeric_types.each {|t2| t2.new.should be_assignable_to(t) } end it 'Numeric is not assignable to any of its subtypes' do t = Puppet::Pops::Types::PNumericType.new() types_to_test = numeric_types - [Puppet::Pops::Types::PNumericType] types_to_test.each {|t2| t.should_not be_assignable_to(t2.new) } end it 'Numeric is not assignable to any disjunct type' do tested_types = all_types - [ Puppet::Pops::Types::PAnyType, Puppet::Pops::Types::POptionalType, Puppet::Pops::Types::PNotUndefType, Puppet::Pops::Types::PDataType, Puppet::Pops::Types::PScalarType, ] - numeric_types t = Puppet::Pops::Types::PNumericType.new() tested_types.each {|t2| t.should_not be_assignable_to(t2.new) } end end context "for Collection, such that" do it "all collections are assignable to Collection" do t = Puppet::Pops::Types::PCollectionType.new() collection_types.each {|t2| t2.new.should be_assignable_to(t) } end it 'Collection is not assignable to any of its subtypes' do t = Puppet::Pops::Types::PCollectionType.new() types_to_test = collection_types - [Puppet::Pops::Types::PCollectionType] types_to_test.each {|t2| t.should_not be_assignable_to(t2.new) } end it 'Collection is not assignable to any disjunct type' do tested_types = all_types - [Puppet::Pops::Types::PAnyType, Puppet::Pops::Types::POptionalType, Puppet::Pops::Types::PNotUndefType] - collection_types t = Puppet::Pops::Types::PCollectionType.new() tested_types.each {|t2| t.should_not be_assignable_to(t2.new) } end end context "for Array, such that" do it "Array is not assignable to non Array based Collection type" do t = Puppet::Pops::Types::PArrayType.new() tested_types = collection_types - [ Puppet::Pops::Types::PCollectionType, Puppet::Pops::Types::PNotUndefType, Puppet::Pops::Types::PArrayType, Puppet::Pops::Types::PTupleType] tested_types.each {|t2| t.should_not be_assignable_to(t2.new) } end it 'Array is not assignable to any disjunct type' do tested_types = all_types - [ Puppet::Pops::Types::PAnyType, Puppet::Pops::Types::POptionalType, Puppet::Pops::Types::PNotUndefType, Puppet::Pops::Types::PDataType] - collection_types t = Puppet::Pops::Types::PArrayType.new() tested_types.each {|t2| t.should_not be_assignable_to(t2.new) } end end context "for Hash, such that" do it "Hash is not assignable to any other Collection type" do t = Puppet::Pops::Types::PHashType.new() tested_types = collection_types - [ Puppet::Pops::Types::PCollectionType, Puppet::Pops::Types::PStructType, Puppet::Pops::Types::PHashType] tested_types.each {|t2| t.should_not be_assignable_to(t2.new) } end it 'Hash is not assignable to any disjunct type' do tested_types = all_types - [ Puppet::Pops::Types::PAnyType, Puppet::Pops::Types::POptionalType, Puppet::Pops::Types::PNotUndefType, Puppet::Pops::Types::PDataType] - collection_types t = Puppet::Pops::Types::PHashType.new() tested_types.each {|t2| t.should_not be_assignable_to(t2.new) } end it 'Struct is assignable to Hash with Pattern that matches all keys' do struct_t({'x' => integer_t, 'y' => integer_t}).should be_assignable_to(hash_t(pattern_t(/^\w+$/), factory.any)) end it 'Struct is assignable to Hash with Enum that matches all keys' do struct_t({'x' => integer_t, 'y' => integer_t}).should be_assignable_to(hash_t(enum_t('x', 'y', 'z'), factory.any)) end it 'Struct is not assignable to Hash with Pattern unless all keys match' do struct_t({'a' => integer_t, 'A' => integer_t}).should_not be_assignable_to(hash_t(pattern_t(/^[A-Z]+$/), factory.any)) end it 'Struct is not assignable to Hash with Enum unless all keys match' do struct_t({'a' => integer_t, 'y' => integer_t}).should_not be_assignable_to(hash_t(enum_t('x', 'y', 'z'), factory.any)) end end context "for Tuple, such that" do it "Tuple is not assignable to any other non Array based Collection type" do t = Puppet::Pops::Types::PTupleType.new() tested_types = collection_types - [ Puppet::Pops::Types::PCollectionType, Puppet::Pops::Types::PTupleType, Puppet::Pops::Types::PArrayType] tested_types.each {|t2| t.should_not be_assignable_to(t2.new) } end it 'Tuple is not assignable to any disjunct type' do tested_types = all_types - [ Puppet::Pops::Types::PAnyType, Puppet::Pops::Types::POptionalType, Puppet::Pops::Types::PNotUndefType, Puppet::Pops::Types::PDataType] - collection_types t = Puppet::Pops::Types::PTupleType.new() tested_types.each {|t2| t.should_not be_assignable_to(t2.new) } end end context "for Struct, such that" do it "Struct is not assignable to any other non Hashed based Collection type" do t = Puppet::Pops::Types::PStructType.new() tested_types = collection_types - [ Puppet::Pops::Types::PCollectionType, Puppet::Pops::Types::PStructType, Puppet::Pops::Types::PHashType] tested_types.each {|t2| t.should_not be_assignable_to(t2.new) } end it 'Struct is not assignable to any disjunct type' do tested_types = all_types - [ Puppet::Pops::Types::PAnyType, Puppet::Pops::Types::POptionalType, Puppet::Pops::Types::PNotUndefType, Puppet::Pops::Types::PDataType] - collection_types t = Puppet::Pops::Types::PStructType.new() tested_types.each {|t2| t.should_not be_assignable_to(t2.new) } end + + it 'Default key optionality is controlled by value assignability to undef' do + t1 = struct_t({'member' => string_t}) + expect(t1.elements[0].key_type).to eq(string_t('member')) + t1 = struct_t({'member' => object_t}) + expect(t1.elements[0].key_type).to eq(optional_t(string_t('member'))) + end + + it "NotUndef['key'] becomes String['key'] (since its implied that String is required)" do + t1 = struct_t({not_undef_t('member') => string_t}) + expect(t1.elements[0].key_type).to eq(string_t('member')) + end + + it "Optional['key'] becomes Optional[String['key']]" do + t1 = struct_t({optional_t('member') => string_t}) + expect(t1.elements[0].key_type).to eq(optional_t(string_t('member'))) + end + + it 'Optional members are not required' do + t1 = struct_t({optional_t('optional_member') => string_t, not_undef_t('other_member') => string_t}) + t2 = struct_t({not_undef_t('other_member') => string_t}) + expect(t2).to be_assignable_to(t1) + end + + it 'Required members not optional even when value is' do + t1 = struct_t({not_undef_t('required_member') => object_t, not_undef_t('other_member') => string_t}) + t2 = struct_t({not_undef_t('other_member') => string_t}) + expect(t2).not_to be_assignable_to(t1) + end end context "for Callable, such that" do it "Callable is not assignable to any disjunct type" do t = Puppet::Pops::Types::PCallableType.new() tested_types = all_types - [ Puppet::Pops::Types::PCallableType, Puppet::Pops::Types::PAnyType, Puppet::Pops::Types::POptionalType, Puppet::Pops::Types::PNotUndefType] tested_types.each {|t2| t.should_not be_assignable_to(t2.new) } end end it 'should recognize mapped ruby types' do { Integer => Puppet::Pops::Types::PIntegerType.new, Fixnum => Puppet::Pops::Types::PIntegerType.new, Bignum => Puppet::Pops::Types::PIntegerType.new, Float => Puppet::Pops::Types::PFloatType.new, Numeric => Puppet::Pops::Types::PNumericType.new, NilClass => Puppet::Pops::Types::PUndefType.new, TrueClass => Puppet::Pops::Types::PBooleanType.new, FalseClass => Puppet::Pops::Types::PBooleanType.new, String => Puppet::Pops::Types::PStringType.new, Regexp => Puppet::Pops::Types::PRegexpType.new, Regexp => Puppet::Pops::Types::PRegexpType.new, Array => Puppet::Pops::Types::TypeFactory.array_of_data(), Hash => Puppet::Pops::Types::TypeFactory.hash_of_data() }.each do |ruby_type, puppet_type | ruby_type.should be_assignable_to(puppet_type) end end context 'when dealing with integer ranges' do it 'should accept an equal range' do calculator.assignable?(range_t(2,5), range_t(2,5)).should == true end it 'should accept an equal reverse range' do calculator.assignable?(range_t(2,5), range_t(5,2)).should == true end it 'should accept a narrower range' do calculator.assignable?(range_t(2,10), range_t(3,5)).should == true end it 'should accept a narrower reverse range' do calculator.assignable?(range_t(2,10), range_t(5,3)).should == true end it 'should reject a wider range' do calculator.assignable?(range_t(3,5), range_t(2,10)).should == false end it 'should reject a wider reverse range' do calculator.assignable?(range_t(3,5), range_t(10,2)).should == false end it 'should reject a partially overlapping range' do calculator.assignable?(range_t(3,5), range_t(2,4)).should == false calculator.assignable?(range_t(3,5), range_t(4,6)).should == false end it 'should reject a partially overlapping reverse range' do calculator.assignable?(range_t(3,5), range_t(4,2)).should == false calculator.assignable?(range_t(3,5), range_t(6,4)).should == false end end context 'when dealing with patterns' do it 'should accept a string matching a pattern' do p_t = pattern_t('abc') p_s = string_t('XabcY') calculator.assignable?(p_t, p_s).should == true end it 'should accept a regexp matching a pattern' do p_t = pattern_t(/abc/) p_s = string_t('XabcY') calculator.assignable?(p_t, p_s).should == true end it 'should accept a pattern matching a pattern' do p_t = pattern_t(pattern_t('abc')) p_s = string_t('XabcY') calculator.assignable?(p_t, p_s).should == true end it 'should accept a regexp matching a pattern' do p_t = pattern_t(regexp_t('abc')) p_s = string_t('XabcY') calculator.assignable?(p_t, p_s).should == true end it 'should accept a string matching all patterns' do p_t = pattern_t('abc', 'ab', 'c') p_s = string_t('XabcY') calculator.assignable?(p_t, p_s).should == true end it 'should accept multiple strings if they all match any patterns' do p_t = pattern_t('X', 'Y', 'abc') p_s = string_t('Xa', 'aY', 'abc') calculator.assignable?(p_t, p_s).should == true end it 'should reject a string not matching any patterns' do p_t = pattern_t('abc', 'ab', 'c') p_s = string_t('XqqqY') calculator.assignable?(p_t, p_s).should == false end it 'should reject multiple strings if not all match any patterns' do p_t = pattern_t('abc', 'ab', 'c', 'q') p_s = string_t('X', 'Y', 'Z') calculator.assignable?(p_t, p_s).should == false end it 'should accept enum matching patterns as instanceof' do enum = enum_t('XS', 'S', 'M', 'L' 'XL', 'XXL') pattern = pattern_t('S', 'M', 'L') calculator.assignable?(pattern, enum).should == true end it 'pattern should accept a variant where all variants are acceptable' do pattern = pattern_t(/^\w+$/) calculator.assignable?(pattern, variant_t(string_t('a'), string_t('b'))).should == true end it 'pattern representing all patterns should accept any pattern' do calculator.assignable?(pattern_t(), pattern_t('a')).should == true calculator.assignable?(pattern_t(), pattern_t()).should == true end it 'pattern representing all patterns should accept any enum' do calculator.assignable?(pattern_t(), enum_t('a')).should == true calculator.assignable?(pattern_t(), enum_t()).should == true end it 'pattern representing all patterns should accept any string' do calculator.assignable?(pattern_t(), string_t('a')).should == true calculator.assignable?(pattern_t(), string_t()).should == true end end context 'when dealing with enums' do it 'should accept a string with matching content' do calculator.assignable?(enum_t('a', 'b'), string_t('a')).should == true calculator.assignable?(enum_t('a', 'b'), string_t('b')).should == true calculator.assignable?(enum_t('a', 'b'), string_t('c')).should == false end it 'should accept an enum with matching enum' do calculator.assignable?(enum_t('a', 'b'), enum_t('a', 'b')).should == true calculator.assignable?(enum_t('a', 'b'), enum_t('a')).should == true calculator.assignable?(enum_t('a', 'b'), enum_t('c')).should == false end it 'non parameterized enum accepts any other enum but not the reverse' do calculator.assignable?(enum_t(), enum_t('a')).should == true calculator.assignable?(enum_t('a'), enum_t()).should == false end it 'enum should accept a variant where all variants are acceptable' do enum = enum_t('a', 'b') calculator.assignable?(enum, variant_t(string_t('a'), string_t('b'))).should == true end end context 'when dealing with string and enum combinations' do it 'should accept assigning any enum to unrestricted string' do calculator.assignable?(string_t(), enum_t('blue')).should == true calculator.assignable?(string_t(), enum_t('blue', 'red')).should == true end it 'should not accept assigning longer enum value to size restricted string' do calculator.assignable?(constrained_t(string_t(),2,2), enum_t('a','blue')).should == false end it 'should accept assigning any string to empty enum' do calculator.assignable?(enum_t(), string_t()).should == true end it 'should accept assigning empty enum to any string' do calculator.assignable?(string_t(), enum_t()).should == true end it 'should not accept assigning empty enum to size constrained string' do calculator.assignable?(constrained_t(string_t(),2,2), enum_t()).should == false end end context 'when dealing with string/pattern/enum combinations' do it 'any string is equal to any enum is equal to any pattern' do calculator.assignable?(string_t(), enum_t()).should == true calculator.assignable?(string_t(), pattern_t()).should == true calculator.assignable?(enum_t(), string_t()).should == true calculator.assignable?(enum_t(), pattern_t()).should == true calculator.assignable?(pattern_t(), string_t()).should == true calculator.assignable?(pattern_t(), enum_t()).should == true end end context 'when dealing with tuples' do it 'matches empty tuples' do tuple1 = tuple_t() tuple2 = tuple_t() calculator.assignable?(tuple1, tuple2).should == true calculator.assignable?(tuple2, tuple1).should == true end it 'accepts an empty tuple as assignable to a tuple with a min size of 0' do tuple1 = tuple_t(Object) factory.constrain_size(tuple1, 0, :default) tuple2 = tuple_t() calculator.assignable?(tuple1, tuple2).should == true calculator.assignable?(tuple2, tuple1).should == false end it 'should accept matching tuples' do tuple1 = tuple_t(1,2) tuple2 = tuple_t(Integer,Integer) calculator.assignable?(tuple1, tuple2).should == true calculator.assignable?(tuple2, tuple1).should == true end it 'should accept matching tuples where one is more general than the other' do tuple1 = tuple_t(1,2) tuple2 = tuple_t(Numeric,Numeric) calculator.assignable?(tuple1, tuple2).should == false calculator.assignable?(tuple2, tuple1).should == true end it 'should accept ranged tuples' do tuple1 = tuple_t(1) factory.constrain_size(tuple1, 5, 5) tuple2 = tuple_t(Integer,Integer, Integer, Integer, Integer) calculator.assignable?(tuple1, tuple2).should == true calculator.assignable?(tuple2, tuple1).should == true end it 'should reject ranged tuples when ranges does not match' do tuple1 = tuple_t(1) factory.constrain_size(tuple1, 4, 5) tuple2 = tuple_t(Integer,Integer, Integer, Integer, Integer) calculator.assignable?(tuple1, tuple2).should == true calculator.assignable?(tuple2, tuple1).should == false end it 'should reject ranged tuples when ranges does not match (using infinite upper bound)' do tuple1 = tuple_t(1) factory.constrain_size(tuple1, 4, :default) tuple2 = tuple_t(Integer,Integer, Integer, Integer, Integer) calculator.assignable?(tuple1, tuple2).should == true calculator.assignable?(tuple2, tuple1).should == false end it 'should accept matching tuples with optional entries by repeating last' do tuple1 = tuple_t(1,2) factory.constrain_size(tuple1, 0, :default) tuple2 = tuple_t(Numeric,Numeric) factory.constrain_size(tuple2, 0, :default) calculator.assignable?(tuple1, tuple2).should == false calculator.assignable?(tuple2, tuple1).should == true end it 'should accept matching tuples with optional entries' do tuple1 = tuple_t(Integer, Integer, String) factory.constrain_size(tuple1, 1, 3) array2 = factory.constrain_size(array_t(Integer),2,2) calculator.assignable?(tuple1, array2).should == true factory.constrain_size(tuple1, 3, 3) calculator.assignable?(tuple1, array2).should == false end it 'should accept matching array' do tuple1 = tuple_t(1,2) array = array_t(Integer) factory.constrain_size(array, 2, 2) calculator.assignable?(tuple1, array).should == true calculator.assignable?(array, tuple1).should == true end it 'should accept empty array when tuple allows min of 0' do tuple1 = tuple_t(Integer) factory.constrain_size(tuple1, 0, 1) array = array_t(Integer) factory.constrain_size(array, 0, 0) calculator.assignable?(tuple1, array).should == true calculator.assignable?(array, tuple1).should == false end end context 'when dealing with structs' do it 'should accept matching structs' do struct1 = struct_t({'a'=>Integer, 'b'=>Integer}) struct2 = struct_t({'a'=>Integer, 'b'=>Integer}) calculator.assignable?(struct1, struct2).should == true calculator.assignable?(struct2, struct1).should == true end it 'should accept matching structs with less elements when unmatched elements are optional' do struct1 = struct_t({'a'=>Integer, 'b'=>Integer, 'c'=>optional_t(Integer)}) struct2 = struct_t({'a'=>Integer, 'b'=>Integer}) calculator.assignable?(struct1, struct2).should == true end it 'should reject matching structs with more elements even if excess elements are optional' do struct1 = struct_t({'a'=>Integer, 'b'=>Integer}) struct2 = struct_t({'a'=>Integer, 'b'=>Integer, 'c'=>optional_t(Integer)}) calculator.assignable?(struct1, struct2).should == false end it 'should accept matching structs where one is more general than the other with respect to optional' do struct1 = struct_t({'a'=>Integer, 'b'=>Integer, 'c'=>optional_t(Integer)}) struct2 = struct_t({'a'=>Integer, 'b'=>Integer, 'c'=>Integer}) calculator.assignable?(struct1, struct2).should == true end it 'should reject matching structs where one is more special than the other with respect to optional' do struct1 = struct_t({'a'=>Integer, 'b'=>Integer, 'c'=>Integer}) struct2 = struct_t({'a'=>Integer, 'b'=>Integer, 'c'=>optional_t(Integer)}) calculator.assignable?(struct1, struct2).should == false end it 'should accept matching structs where one is more general than the other' do struct1 = struct_t({'a'=>Integer, 'b'=>Integer}) struct2 = struct_t({'a'=>Numeric, 'b'=>Numeric}) calculator.assignable?(struct1, struct2).should == false calculator.assignable?(struct2, struct1).should == true end it 'should accept matching hash' do struct1 = struct_t({'a'=>Integer, 'b'=>Integer}) non_empty_string = string_t() non_empty_string.size_type = range_t(1, nil) hsh = hash_t(non_empty_string, Integer) factory.constrain_size(hsh, 2, 2) calculator.assignable?(struct1, hsh).should == true calculator.assignable?(hsh, struct1).should == true end it 'should accept empty hash with key_type undef' do struct1 = struct_t({'a'=>optional_t(Integer)}) hsh = hash_t(undef_t, undef_t) factory.constrain_size(hsh, 0, 0) calculator.assignable?(struct1, hsh).should == true end end it 'should recognize ruby type inheritance' do class Foo end class Bar < Foo end fooType = calculator.infer(Foo.new) barType = calculator.infer(Bar.new) calculator.assignable?(fooType, fooType).should == true calculator.assignable?(Foo, fooType).should == true calculator.assignable?(fooType, barType).should == true calculator.assignable?(Foo, barType).should == true calculator.assignable?(barType, fooType).should == false calculator.assignable?(Bar, fooType).should == false end it "should allow host class with same name" do hc1 = Puppet::Pops::Types::TypeFactory.host_class('the_name') hc2 = Puppet::Pops::Types::TypeFactory.host_class('the_name') calculator.assignable?(hc1, hc2).should == true end it "should allow host class with name assigned to hostclass without name" do hc1 = Puppet::Pops::Types::TypeFactory.host_class() hc2 = Puppet::Pops::Types::TypeFactory.host_class('the_name') calculator.assignable?(hc1, hc2).should == true end it "should reject host classes with different names" do hc1 = Puppet::Pops::Types::TypeFactory.host_class('the_name') hc2 = Puppet::Pops::Types::TypeFactory.host_class('another_name') calculator.assignable?(hc1, hc2).should == false end it "should reject host classes without name assigned to host class with name" do hc1 = Puppet::Pops::Types::TypeFactory.host_class('the_name') hc2 = Puppet::Pops::Types::TypeFactory.host_class() calculator.assignable?(hc1, hc2).should == false end it "should allow resource with same type_name and title" do r1 = Puppet::Pops::Types::TypeFactory.resource('file', 'foo') r2 = Puppet::Pops::Types::TypeFactory.resource('file', 'foo') calculator.assignable?(r1, r2).should == true end it "should allow more specific resource assignment" do r1 = Puppet::Pops::Types::TypeFactory.resource() r2 = Puppet::Pops::Types::TypeFactory.resource('file') calculator.assignable?(r1, r2).should == true r2 = Puppet::Pops::Types::TypeFactory.resource('file', '/tmp/foo') calculator.assignable?(r1, r2).should == true r1 = Puppet::Pops::Types::TypeFactory.resource('file') calculator.assignable?(r1, r2).should == true end it "should reject less specific resource assignment" do r1 = Puppet::Pops::Types::TypeFactory.resource('file', '/tmp/foo') r2 = Puppet::Pops::Types::TypeFactory.resource('file') calculator.assignable?(r1, r2).should == false r2 = Puppet::Pops::Types::TypeFactory.resource() calculator.assignable?(r1, r2).should == false end end context 'when testing if x is instance of type t' do include_context "types_setup" it 'should consider undef to be instance of Any, NilType, and optional' do calculator.instance?(Puppet::Pops::Types::PUndefType.new(), nil).should == true calculator.instance?(Puppet::Pops::Types::PAnyType.new(), nil).should == true calculator.instance?(Puppet::Pops::Types::POptionalType.new(), nil).should == true end it 'all types should be (ruby) instance of PAnyType' do all_types.each do |t| t.new.is_a?(Puppet::Pops::Types::PAnyType).should == true end end it "should consider :undef to be instance of Runtime['ruby', 'Symbol]" do calculator.instance?(Puppet::Pops::Types::PRuntimeType.new(:runtime => :ruby, :runtime_type_name => 'Symbol'), :undef).should == true end it "should consider :undef to be instance of an Optional type" do calculator.instance?(Puppet::Pops::Types::POptionalType.new(), :undef).should == true end it 'should not consider undef to be an instance of any other type than Any, UndefType and Data' do types_to_test = all_types - [ Puppet::Pops::Types::PAnyType, Puppet::Pops::Types::PUndefType, Puppet::Pops::Types::PDataType, Puppet::Pops::Types::POptionalType, ] types_to_test.each {|t| calculator.instance?(t.new, nil).should == false } types_to_test.each {|t| calculator.instance?(t.new, :undef).should == false } end it 'should consider default to be instance of Default and Any' do calculator.instance?(Puppet::Pops::Types::PDefaultType.new(), :default).should == true calculator.instance?(Puppet::Pops::Types::PAnyType.new(), :default).should == true end it 'should not consider "default" to be an instance of anything but Default, NotUndef, and Any' do types_to_test = all_types - [ Puppet::Pops::Types::PAnyType, Puppet::Pops::Types::PNotUndefType, Puppet::Pops::Types::PDefaultType, ] types_to_test.each {|t| calculator.instance?(t.new, :default).should == false } end it 'should consider fixnum instanceof PIntegerType' do calculator.instance?(Puppet::Pops::Types::PIntegerType.new(), 1).should == true end it 'should consider fixnum instanceof Fixnum' do calculator.instance?(Fixnum, 1).should == true end it 'should consider integer in range' do range = range_t(0,10) calculator.instance?(range, 1).should == true calculator.instance?(range, 10).should == true calculator.instance?(range, -1).should == false calculator.instance?(range, 11).should == false end it 'should consider string in length range' do range = factory.constrain_size(string_t, 1,3) calculator.instance?(range, 'a').should == true calculator.instance?(range, 'abc').should == true calculator.instance?(range, '').should == false calculator.instance?(range, 'abcd').should == false end it 'should consider string values' do string = string_t('a', 'b') expect(calculator.instance?(string, 'a')).to eq(true) expect(calculator.instance?(string, 'b')).to eq(true) expect(calculator.instance?(string, 'c')).to eq(false) end it 'should consider array in length range' do range = factory.constrain_size(array_t(integer_t), 1,3) calculator.instance?(range, [1]).should == true calculator.instance?(range, [1,2,3]).should == true calculator.instance?(range, []).should == false calculator.instance?(range, [1,2,3,4]).should == false end it 'should consider hash in length range' do range = factory.constrain_size(hash_t(integer_t, integer_t), 1,2) calculator.instance?(range, {1=>1}).should == true calculator.instance?(range, {1=>1, 2=>2}).should == true calculator.instance?(range, {}).should == false calculator.instance?(range, {1=>1, 2=>2, 3=>3}).should == false end it 'should consider collection in length range for array ' do range = factory.constrain_size(collection_t, 1,3) calculator.instance?(range, [1]).should == true calculator.instance?(range, [1,2,3]).should == true calculator.instance?(range, []).should == false calculator.instance?(range, [1,2,3,4]).should == false end it 'should consider collection in length range for hash' do range = factory.constrain_size(collection_t, 1,2) calculator.instance?(range, {1=>1}).should == true calculator.instance?(range, {1=>1, 2=>2}).should == true calculator.instance?(range, {}).should == false calculator.instance?(range, {1=>1, 2=>2, 3=>3}).should == false end it 'should consider string matching enum as instanceof' do enum = enum_t('XS', 'S', 'M', 'L', 'XL', '0') calculator.instance?(enum, 'XS').should == true calculator.instance?(enum, 'S').should == true calculator.instance?(enum, 'XXL').should == false calculator.instance?(enum, '').should == false calculator.instance?(enum, '0').should == true calculator.instance?(enum, 0).should == false end it 'should consider array[string] as instance of Array[Enum] when strings are instance of Enum' do enum = enum_t('XS', 'S', 'M', 'L', 'XL', '0') array = array_t(enum) calculator.instance?(array, ['XS', 'S', 'XL']).should == true calculator.instance?(array, ['XS', 'S', 'XXL']).should == false end it 'should consider array[mixed] as instance of Variant[mixed] when mixed types are listed in Variant' do enum = enum_t('XS', 'S', 'M', 'L', 'XL') sizes = range_t(30, 50) array = array_t(variant_t(enum, sizes)) calculator.instance?(array, ['XS', 'S', 30, 50]).should == true calculator.instance?(array, ['XS', 'S', 'XXL']).should == false calculator.instance?(array, ['XS', 'S', 29]).should == false end it 'should consider array[seq] as instance of Tuple[seq] when elements of seq are instance of' do tuple = tuple_t(Integer, String, Float) calculator.instance?(tuple, [1, 'a', 3.14]).should == true calculator.instance?(tuple, [1.2, 'a', 3.14]).should == false calculator.instance?(tuple, [1, 1, 3.14]).should == false calculator.instance?(tuple, [1, 'a', 1]).should == false end context 'and t is Struct' do it 'should consider hash[cont] as instance of Struct[cont-t]' do struct = struct_t({'a'=>Integer, 'b'=>String, 'c'=>Float}) calculator.instance?(struct, {'a'=>1, 'b'=>'a', 'c'=>3.14}).should == true calculator.instance?(struct, {'a'=>1.2, 'b'=>'a', 'c'=>3.14}).should == false calculator.instance?(struct, {'a'=>1, 'b'=>1, 'c'=>3.14}).should == false calculator.instance?(struct, {'a'=>1, 'b'=>'a', 'c'=>1}).should == false end it 'should consider empty hash as instance of Struct[x=>Optional[String]]' do struct = struct_t({'a'=>optional_t(String)}) calculator.instance?(struct, {}).should == true end it 'should consider hash[cont] as instance of Struct[cont-t,optionals]' do struct = struct_t({'a'=>Integer, 'b'=>String, 'c'=>optional_t(Float)}) calculator.instance?(struct, {'a'=>1, 'b'=>'a'}).should == true end it 'should consider hash[cont] as instance of Struct[cont-t,variants with optionals]' do struct = struct_t({'a'=>Integer, 'b'=>String, 'c'=>variant_t(String, optional_t(Float))}) calculator.instance?(struct, {'a'=>1, 'b'=>'a'}).should == true end it 'should not consider hash[cont,cont2] as instance of Struct[cont-t]' do struct = struct_t({'a'=>Integer, 'b'=>String}) calculator.instance?(struct, {'a'=>1, 'b'=>'a', 'c'=>'x'}).should == false end it 'should not consider hash[cont,cont2] as instance of Struct[cont-t,optional[cont3-t]' do struct = struct_t({'a'=>Integer, 'b'=>String, 'c'=>optional_t(Float)}) calculator.instance?(struct, {'a'=>1, 'b'=>'a', 'c'=>'x'}).should == false end + + it 'should consider nil to be a valid element value' do + struct = struct_t({not_undef_t('a') => object_t, 'b'=>String}) + expect(calculator.instance?(struct, {'a'=>nil , 'b'=>'a'})).to eq(true) + end + + it 'should consider nil to be a valid element value but subject to value type' do + struct = struct_t({not_undef_t('a') => String, 'b'=>String}) + expect(calculator.instance?(struct, {'a'=>nil , 'b'=>'a'})).to eq(false) + end + + it 'should consider nil to be a valid element value but subject to value type even when key is optional' do + struct = struct_t({optional_t('a') => String, 'b'=>String}) + expect(calculator.instance?(struct, {'a'=>nil , 'b'=>'a'})).to eq(false) + end + + it 'should consider a hash where optional key is missing as assignable even if value of optional key is required' do + struct = struct_t({optional_t('a') => String, 'b'=>String}) + expect(calculator.instance?(struct, {'b'=>'a'})).to eq(true) + end end context 'and t is Data' do it 'undef should be considered instance of Data' do calculator.instance?(data_t, nil).should == true end it 'other symbols should not be considered instance of Data' do calculator.instance?(data_t, :love).should == false end it 'an empty array should be considered instance of Data' do calculator.instance?(data_t, []).should == true end it 'an empty hash should be considered instance of Data' do calculator.instance?(data_t, {}).should == true end it 'a hash with nil/undef data should be considered instance of Data' do calculator.instance?(data_t, {'a' => nil}).should == true end it 'a hash with nil/default key should not considered instance of Data' do calculator.instance?(data_t, {nil => 10}).should == false calculator.instance?(data_t, {:default => 10}).should == false end it 'an array with nil entries should be considered instance of Data' do calculator.instance?(data_t, [nil]).should == true end it 'an array with nil + data entries should be considered instance of Data' do calculator.instance?(data_t, [1, nil, 'a']).should == true end end context "and t is something Callable" do it 'a Closure should be considered a Callable' do factory = Puppet::Pops::Model::Factory params = [factory.PARAM('a')] the_block = factory.LAMBDA(params,factory.literal(42)) the_closure = Puppet::Pops::Evaluator::Closure.new(:fake_evaluator, the_block, :fake_scope) expect(calculator.instance?(all_callables_t, the_closure)).to be_true expect(calculator.instance?(callable_t(object_t), the_closure)).to be_true expect(calculator.instance?(callable_t(object_t, object_t), the_closure)).to be_false end it 'a Function instance should be considered a Callable' do fc = Puppet::Functions.create_function(:foo) do dispatch :foo do param 'String', 'a' end def foo(a) a end end f = fc.new(:closure_scope, :loader) # Any callable expect(calculator.instance?(all_callables_t, f)).to be_true # Callable[String] expect(calculator.instance?(callable_t(String), f)).to be_true end end end context 'when converting a ruby class' do it 'should yield \'PIntegerType\' for Integer, Fixnum, and Bignum' do [Integer,Fixnum,Bignum].each do |c| calculator.type(c).class.should == Puppet::Pops::Types::PIntegerType end end it 'should yield \'PFloatType\' for Float' do calculator.type(Float).class.should == Puppet::Pops::Types::PFloatType end it 'should yield \'PBooleanType\' for FalseClass and TrueClass' do [FalseClass,TrueClass].each do |c| calculator.type(c).class.should == Puppet::Pops::Types::PBooleanType end end it 'should yield \'PUndefType\' for NilClass' do calculator.type(NilClass).class.should == Puppet::Pops::Types::PUndefType end it 'should yield \'PStringType\' for String' do calculator.type(String).class.should == Puppet::Pops::Types::PStringType end it 'should yield \'PRegexpType\' for Regexp' do calculator.type(Regexp).class.should == Puppet::Pops::Types::PRegexpType end it 'should yield \'PArrayType[PDataType]\' for Array' do t = calculator.type(Array) t.class.should == Puppet::Pops::Types::PArrayType t.element_type.class.should == Puppet::Pops::Types::PDataType end it 'should yield \'PHashType[PScalarType,PDataType]\' for Hash' do t = calculator.type(Hash) t.class.should == Puppet::Pops::Types::PHashType t.key_type.class.should == Puppet::Pops::Types::PScalarType t.element_type.class.should == Puppet::Pops::Types::PDataType end end context 'when representing the type as string' do it 'should yield \'Type\' for PType' do calculator.string(Puppet::Pops::Types::PType.new()).should == 'Type' end it 'should yield \'Object\' for PAnyType' do calculator.string(Puppet::Pops::Types::PAnyType.new()).should == 'Any' end it 'should yield \'Scalar\' for PScalarType' do calculator.string(Puppet::Pops::Types::PScalarType.new()).should == 'Scalar' end it 'should yield \'Boolean\' for PBooleanType' do calculator.string(Puppet::Pops::Types::PBooleanType.new()).should == 'Boolean' end it 'should yield \'Data\' for PDataType' do calculator.string(Puppet::Pops::Types::PDataType.new()).should == 'Data' end it 'should yield \'Numeric\' for PNumericType' do calculator.string(Puppet::Pops::Types::PNumericType.new()).should == 'Numeric' end it 'should yield \'Integer\' and from/to for PIntegerType' do int_T = Puppet::Pops::Types::PIntegerType calculator.string(int_T.new()).should == 'Integer' int = int_T.new() int.from = 1 int.to = 1 calculator.string(int).should == 'Integer[1, 1]' int = int_T.new() int.from = 1 int.to = 2 calculator.string(int).should == 'Integer[1, 2]' int = int_T.new() int.from = nil int.to = 2 calculator.string(int).should == 'Integer[default, 2]' int = int_T.new() int.from = 2 int.to = nil calculator.string(int).should == 'Integer[2, default]' end it 'should yield \'Float\' for PFloatType' do calculator.string(Puppet::Pops::Types::PFloatType.new()).should == 'Float' end it 'should yield \'Regexp\' for PRegexpType' do calculator.string(Puppet::Pops::Types::PRegexpType.new()).should == 'Regexp' end it 'should yield \'Regexp[/pat/]\' for parameterized PRegexpType' do t = Puppet::Pops::Types::PRegexpType.new() t.pattern = ('a/b') calculator.string(Puppet::Pops::Types::PRegexpType.new()).should == 'Regexp' end it 'should yield \'String\' for PStringType' do calculator.string(Puppet::Pops::Types::PStringType.new()).should == 'String' end it 'should yield \'String\' for PStringType with multiple values' do calculator.string(string_t('a', 'b', 'c')).should == 'String' end it 'should yield \'String\' and from/to for PStringType' do string_T = Puppet::Pops::Types::PStringType calculator.string(factory.constrain_size(string_T.new(), 1,1)).should == 'String[1, 1]' calculator.string(factory.constrain_size(string_T.new(), 1,2)).should == 'String[1, 2]' calculator.string(factory.constrain_size(string_T.new(), :default, 2)).should == 'String[default, 2]' calculator.string(factory.constrain_size(string_T.new(), 2, :default)).should == 'String[2, default]' end it 'should yield \'Array[Integer]\' for PArrayType[PIntegerType]' do t = Puppet::Pops::Types::PArrayType.new() t.element_type = Puppet::Pops::Types::PIntegerType.new() calculator.string(t).should == 'Array[Integer]' end it 'should yield \'Collection\' and from/to for PCollectionType' do col = collection_t() calculator.string(factory.constrain_size(col.copy, 1,1)).should == 'Collection[1, 1]' calculator.string(factory.constrain_size(col.copy, 1,2)).should == 'Collection[1, 2]' calculator.string(factory.constrain_size(col.copy, :default, 2)).should == 'Collection[default, 2]' calculator.string(factory.constrain_size(col.copy, 2, :default)).should == 'Collection[2, default]' end it 'should yield \'Array\' and from/to for PArrayType' do arr = array_t(string_t) calculator.string(factory.constrain_size(arr.copy, 1,1)).should == 'Array[String, 1, 1]' calculator.string(factory.constrain_size(arr.copy, 1,2)).should == 'Array[String, 1, 2]' calculator.string(factory.constrain_size(arr.copy, :default, 2)).should == 'Array[String, default, 2]' calculator.string(factory.constrain_size(arr.copy, 2, :default)).should == 'Array[String, 2, default]' end it 'should yield \'Tuple[Integer]\' for PTupleType[PIntegerType]' do t = Puppet::Pops::Types::PTupleType.new() t.addTypes(Puppet::Pops::Types::PIntegerType.new()) calculator.string(t).should == 'Tuple[Integer]' end it 'should yield \'Tuple[T, T,..]\' for PTupleType[T, T, ...]' do t = Puppet::Pops::Types::PTupleType.new() t.addTypes(Puppet::Pops::Types::PIntegerType.new()) t.addTypes(Puppet::Pops::Types::PIntegerType.new()) t.addTypes(Puppet::Pops::Types::PStringType.new()) calculator.string(t).should == 'Tuple[Integer, Integer, String]' end it 'should yield \'Tuple\' and from/to for PTupleType' do tuple_t = tuple_t(string_t) calculator.string(factory.constrain_size(tuple_t.copy, 1,1)).should == 'Tuple[String, 1, 1]' calculator.string(factory.constrain_size(tuple_t.copy, 1,2)).should == 'Tuple[String, 1, 2]' calculator.string(factory.constrain_size(tuple_t.copy, :default, 2)).should == 'Tuple[String, default, 2]' calculator.string(factory.constrain_size(tuple_t.copy, 2, :default)).should == 'Tuple[String, 2, default]' end it 'should yield \'Struct\' and details for PStructType' do struct_t = struct_t({'a'=>Integer, 'b'=>String}) s = calculator.string(struct_t) # Ruby 1.8.7 - noone likes you... (s == "Struct[{'a'=>Integer, 'b'=>String}]" || s == "Struct[{'b'=>String, 'a'=>Integer}]").should == true struct_t = struct_t({}) calculator.string(struct_t).should == "Struct" end it 'should yield \'Hash[String, Integer]\' for PHashType[PStringType, PIntegerType]' do t = Puppet::Pops::Types::PHashType.new() t.key_type = Puppet::Pops::Types::PStringType.new() t.element_type = Puppet::Pops::Types::PIntegerType.new() calculator.string(t).should == 'Hash[String, Integer]' end it 'should yield \'Hash\' and from/to for PHashType' do hsh = hash_t(string_t, string_t) calculator.string(factory.constrain_size(hsh.copy, 1,1)).should == 'Hash[String, String, 1, 1]' calculator.string(factory.constrain_size(hsh.copy, 1,2)).should == 'Hash[String, String, 1, 2]' calculator.string(factory.constrain_size(hsh.copy, :default, 2)).should == 'Hash[String, String, default, 2]' calculator.string(factory.constrain_size(hsh.copy, 2, :default)).should == 'Hash[String, String, 2, default]' end it "should yield 'Class' for a PHostClassType" do t = Puppet::Pops::Types::PHostClassType.new() calculator.string(t).should == 'Class' end it "should yield 'Class[x]' for a PHostClassType[x]" do t = Puppet::Pops::Types::PHostClassType.new() t.class_name = 'x' calculator.string(t).should == 'Class[x]' end it "should yield 'Resource' for a PResourceType" do t = Puppet::Pops::Types::PResourceType.new() calculator.string(t).should == 'Resource' end it 'should yield \'File\' for a PResourceType[\'File\']' do t = Puppet::Pops::Types::PResourceType.new() t.type_name = 'File' calculator.string(t).should == 'File' end it "should yield 'File['/tmp/foo']' for a PResourceType['File', '/tmp/foo']" do t = Puppet::Pops::Types::PResourceType.new() t.type_name = 'File' t.title = '/tmp/foo' calculator.string(t).should == "File['/tmp/foo']" end it "should yield 'Enum[s,...]' for a PEnumType[s,...]" do t = enum_t('a', 'b', 'c') calculator.string(t).should == "Enum['a', 'b', 'c']" end it "should yield 'Pattern[/pat/,...]' for a PPatternType['pat',...]" do t = pattern_t('a') t2 = pattern_t('a', 'b', 'c') calculator.string(t).should == "Pattern[/a/]" calculator.string(t2).should == "Pattern[/a/, /b/, /c/]" end it "should escape special characters in the string for a PPatternType['pat',...]" do t = pattern_t('a/b') calculator.string(t).should == "Pattern[/a\\/b/]" end it "should yield 'Variant[t1,t2,...]' for a PVariantType[t1, t2,...]" do t1 = string_t() t2 = integer_t() t3 = pattern_t('a') t = variant_t(t1, t2, t3) calculator.string(t).should == "Variant[String, Integer, Pattern[/a/]]" end it "should yield 'Callable' for generic callable" do expect(calculator.string(all_callables_t)).to eql("Callable") end it "should yield 'Callable[0,0]' for callable without params" do expect(calculator.string(callable_t)).to eql("Callable[0, 0]") end it "should yield 'Callable[t,t]' for callable with typed parameters" do expect(calculator.string(callable_t(String, Integer))).to eql("Callable[String, Integer]") end it "should yield 'Callable[t,min,max]' for callable with size constraint (infinite max)" do expect(calculator.string(callable_t(String, 0))).to eql("Callable[String, 0, default]") end it "should yield 'Callable[t,min,max]' for callable with size constraint (capped max)" do expect(calculator.string(callable_t(String, 0, 3))).to eql("Callable[String, 0, 3]") end it "should yield 'Callable[min,max]' callable with size > 0" do expect(calculator.string(callable_t(0, 0))).to eql("Callable[0, 0]") expect(calculator.string(callable_t(0, 1))).to eql("Callable[0, 1]") expect(calculator.string(callable_t(0, :default))).to eql("Callable[0, default]") end it "should yield 'Callable[Callable]' for callable with block" do expect(calculator.string(callable_t(all_callables_t))).to eql("Callable[0, 0, Callable]") expect(calculator.string(callable_t(string_t, all_callables_t))).to eql("Callable[String, Callable]") expect(calculator.string(callable_t(string_t, 1,1, all_callables_t))).to eql("Callable[String, 1, 1, Callable]") end it "should yield Unit for a Unit type" do expect(calculator.string(unit_t)).to eql('Unit') end it "should yield 'NotUndef' for a PNotUndefType" do t = not_undef_t expect(calculator.string(t)).to eq('NotUndef') end it "should yield 'NotUndef[T]' for a PNotUndefType[T]" do t = not_undef_t(data_t) expect(calculator.string(t)).to eq('NotUndef[Data]') end it "should yield 'NotUndef['string']' for a PNotUndefType['string']" do t = not_undef_t('hey') expect(calculator.string(t)).to eq("NotUndef['hey']") end end context 'when processing meta type' do it 'should infer PType as the type of all other types' do ptype = Puppet::Pops::Types::PType calculator.infer(Puppet::Pops::Types::PUndefType.new() ).is_a?(ptype).should() == true calculator.infer(Puppet::Pops::Types::PDataType.new() ).is_a?(ptype).should() == true calculator.infer(Puppet::Pops::Types::PScalarType.new() ).is_a?(ptype).should() == true calculator.infer(Puppet::Pops::Types::PStringType.new() ).is_a?(ptype).should() == true calculator.infer(Puppet::Pops::Types::PNumericType.new() ).is_a?(ptype).should() == true calculator.infer(Puppet::Pops::Types::PIntegerType.new() ).is_a?(ptype).should() == true calculator.infer(Puppet::Pops::Types::PFloatType.new() ).is_a?(ptype).should() == true calculator.infer(Puppet::Pops::Types::PRegexpType.new() ).is_a?(ptype).should() == true calculator.infer(Puppet::Pops::Types::PBooleanType.new() ).is_a?(ptype).should() == true calculator.infer(Puppet::Pops::Types::PCollectionType.new()).is_a?(ptype).should() == true calculator.infer(Puppet::Pops::Types::PArrayType.new() ).is_a?(ptype).should() == true calculator.infer(Puppet::Pops::Types::PHashType.new() ).is_a?(ptype).should() == true calculator.infer(Puppet::Pops::Types::PRuntimeType.new() ).is_a?(ptype).should() == true calculator.infer(Puppet::Pops::Types::PHostClassType.new() ).is_a?(ptype).should() == true calculator.infer(Puppet::Pops::Types::PResourceType.new() ).is_a?(ptype).should() == true calculator.infer(Puppet::Pops::Types::PEnumType.new() ).is_a?(ptype).should() == true calculator.infer(Puppet::Pops::Types::PPatternType.new() ).is_a?(ptype).should() == true calculator.infer(Puppet::Pops::Types::PVariantType.new() ).is_a?(ptype).should() == true calculator.infer(Puppet::Pops::Types::PTupleType.new() ).is_a?(ptype).should() == true calculator.infer(Puppet::Pops::Types::POptionalType.new() ).is_a?(ptype).should() == true calculator.infer(Puppet::Pops::Types::PCallableType.new() ).is_a?(ptype).should() == true end it 'should infer PType as the type of all other types' do ptype = Puppet::Pops::Types::PType calculator.string(calculator.infer(Puppet::Pops::Types::PUndefType.new() )).should == "Type[Undef]" calculator.string(calculator.infer(Puppet::Pops::Types::PDataType.new() )).should == "Type[Data]" calculator.string(calculator.infer(Puppet::Pops::Types::PScalarType.new() )).should == "Type[Scalar]" calculator.string(calculator.infer(Puppet::Pops::Types::PStringType.new() )).should == "Type[String]" calculator.string(calculator.infer(Puppet::Pops::Types::PNumericType.new() )).should == "Type[Numeric]" calculator.string(calculator.infer(Puppet::Pops::Types::PIntegerType.new() )).should == "Type[Integer]" calculator.string(calculator.infer(Puppet::Pops::Types::PFloatType.new() )).should == "Type[Float]" calculator.string(calculator.infer(Puppet::Pops::Types::PRegexpType.new() )).should == "Type[Regexp]" calculator.string(calculator.infer(Puppet::Pops::Types::PBooleanType.new() )).should == "Type[Boolean]" calculator.string(calculator.infer(Puppet::Pops::Types::PCollectionType.new())).should == "Type[Collection]" calculator.string(calculator.infer(Puppet::Pops::Types::PArrayType.new() )).should == "Type[Array[?]]" calculator.string(calculator.infer(Puppet::Pops::Types::PHashType.new() )).should == "Type[Hash[?, ?]]" calculator.string(calculator.infer(Puppet::Pops::Types::PRuntimeType.new() )).should == "Type[Runtime[?, ?]]" calculator.string(calculator.infer(Puppet::Pops::Types::PHostClassType.new() )).should == "Type[Class]" calculator.string(calculator.infer(Puppet::Pops::Types::PResourceType.new() )).should == "Type[Resource]" calculator.string(calculator.infer(Puppet::Pops::Types::PEnumType.new() )).should == "Type[Enum]" calculator.string(calculator.infer(Puppet::Pops::Types::PVariantType.new() )).should == "Type[Variant]" calculator.string(calculator.infer(Puppet::Pops::Types::PPatternType.new() )).should == "Type[Pattern]" calculator.string(calculator.infer(Puppet::Pops::Types::PTupleType.new() )).should == "Type[Tuple]" calculator.string(calculator.infer(Puppet::Pops::Types::POptionalType.new() )).should == "Type[Optional]" calculator.string(calculator.infer(Puppet::Pops::Types::PCallableType.new() )).should == "Type[Callable]" calculator.infer(Puppet::Pops::Types::PResourceType.new(:type_name => 'foo::fee::fum')).to_s.should == "Type[Foo::Fee::Fum]" calculator.string(calculator.infer(Puppet::Pops::Types::PResourceType.new(:type_name => 'foo::fee::fum'))).should == "Type[Foo::Fee::Fum]" calculator.infer(Puppet::Pops::Types::PResourceType.new(:type_name => 'Foo::Fee::Fum')).to_s.should == "Type[Foo::Fee::Fum]" end it "computes the common type of PType's type parameter" do int_t = Puppet::Pops::Types::PIntegerType.new() string_t = Puppet::Pops::Types::PStringType.new() calculator.string(calculator.infer([int_t])).should == "Array[Type[Integer], 1, 1]" calculator.string(calculator.infer([int_t, string_t])).should == "Array[Type[Scalar], 2, 2]" end it 'should infer PType as the type of ruby classes' do class Foo end [Object, Numeric, Integer, Fixnum, Bignum, Float, String, Regexp, Array, Hash, Foo].each do |c| calculator.infer(c).is_a?(Puppet::Pops::Types::PType).should() == true end end it 'should infer PType as the type of PType (meta regression short-circuit)' do calculator.infer(Puppet::Pops::Types::PType.new()).is_a?(Puppet::Pops::Types::PType).should() == true end it 'computes instance? to be true if parameterized and type match' do int_t = Puppet::Pops::Types::PIntegerType.new() type_t = Puppet::Pops::Types::TypeFactory.type_type(int_t) type_type_t = Puppet::Pops::Types::TypeFactory.type_type(type_t) calculator.instance?(type_type_t, type_t).should == true end it 'computes instance? to be false if parameterized and type do not match' do int_t = Puppet::Pops::Types::PIntegerType.new() string_t = Puppet::Pops::Types::PStringType.new() type_t = Puppet::Pops::Types::TypeFactory.type_type(int_t) type_t2 = Puppet::Pops::Types::TypeFactory.type_type(string_t) type_type_t = Puppet::Pops::Types::TypeFactory.type_type(type_t) # i.e. Type[Integer] =~ Type[Type[Integer]] # false calculator.instance?(type_type_t, type_t2).should == false end it 'computes instance? to be true if unparameterized and matched against a type[?]' do int_t = Puppet::Pops::Types::PIntegerType.new() type_t = Puppet::Pops::Types::TypeFactory.type_type(int_t) calculator.instance?(Puppet::Pops::Types::PType.new, type_t).should == true end end context "when asking for an enumerable " do it "should produce an enumerable for an Integer range that is not infinite" do t = Puppet::Pops::Types::PIntegerType.new() t.from = 1 t.to = 10 calculator.enumerable(t).respond_to?(:each).should == true end it "should not produce an enumerable for an Integer range that has an infinite side" do t = Puppet::Pops::Types::PIntegerType.new() t.from = nil t.to = 10 calculator.enumerable(t).should == nil t = Puppet::Pops::Types::PIntegerType.new() t.from = 1 t.to = nil calculator.enumerable(t).should == nil end it "all but Integer range are not enumerable" do [Object, Numeric, Float, String, Regexp, Array, Hash].each do |t| calculator.enumerable(calculator.type(t)).should == nil end end end context "when dealing with different types of inference" do it "an instance specific inference is produced by infer" do calculator.infer(['a','b']).element_type.values.should == ['a', 'b'] end it "a generic inference is produced using infer_generic" do calculator.infer_generic(['a','b']).element_type.values.should == [] end it "a generic result is created by generalize! given an instance specific result for an Array" do generic = calculator.infer(['a','b']) generic.element_type.values.should == ['a', 'b'] calculator.generalize!(generic) generic.element_type.values.should == [] end it "a generic result is created by generalize! given an instance specific result for a Hash" do generic = calculator.infer({'a' =>1,'b' => 2}) generic.key_type.values.sort.should == ['a', 'b'] generic.element_type.from.should == 1 generic.element_type.to.should == 2 calculator.generalize!(generic) generic.key_type.values.should == [] generic.element_type.from.should == nil generic.element_type.to.should == nil end it "does not reduce by combining types when using infer_set" do element_type = calculator.infer(['a','b',1,2]).element_type element_type.class.should == Puppet::Pops::Types::PScalarType inferred_type = calculator.infer_set(['a','b',1,2]) inferred_type.class.should == Puppet::Pops::Types::PTupleType element_types = inferred_type.types element_types[0].class.should == Puppet::Pops::Types::PStringType element_types[1].class.should == Puppet::Pops::Types::PStringType element_types[2].class.should == Puppet::Pops::Types::PIntegerType element_types[3].class.should == Puppet::Pops::Types::PIntegerType end it "does not reduce by combining types when using infer_set and values are undef" do element_type = calculator.infer(['a',nil]).element_type element_type.class.should == Puppet::Pops::Types::PStringType inferred_type = calculator.infer_set(['a',nil]) inferred_type.class.should == Puppet::Pops::Types::PTupleType element_types = inferred_type.types element_types[0].class.should == Puppet::Pops::Types::PStringType element_types[1].class.should == Puppet::Pops::Types::PUndefType end end context 'when determening callability' do context 'and given is exact' do it 'with callable' do required = callable_t(string_t) given = callable_t(string_t) calculator.callable?(required, given).should == true end it 'with args tuple' do required = callable_t(string_t) given = tuple_t(string_t) calculator.callable?(required, given).should == true end it 'with args tuple having a block' do required = callable_t(string_t, callable_t(string_t)) given = tuple_t(string_t, callable_t(string_t)) calculator.callable?(required, given).should == true end it 'with args array' do required = callable_t(string_t) given = array_t(string_t) factory.constrain_size(given, 1, 1) calculator.callable?(required, given).should == true end end context 'and given is more generic' do it 'with callable' do required = callable_t(string_t) given = callable_t(object_t) calculator.callable?(required, given).should == true end it 'with args tuple' do required = callable_t(string_t) given = tuple_t(object_t) calculator.callable?(required, given).should == false end it 'with args tuple having a block' do required = callable_t(string_t, callable_t(string_t)) given = tuple_t(string_t, callable_t(object_t)) calculator.callable?(required, given).should == true end it 'with args tuple having a block with captures rest' do required = callable_t(string_t, callable_t(string_t)) given = tuple_t(string_t, callable_t(object_t, 0, :default)) calculator.callable?(required, given).should == true end end context 'and given is more specific' do it 'with callable' do required = callable_t(object_t) given = callable_t(string_t) calculator.callable?(required, given).should == false end it 'with args tuple' do required = callable_t(object_t) given = tuple_t(string_t) calculator.callable?(required, given).should == true end it 'with args tuple having a block' do required = callable_t(string_t, callable_t(object_t)) given = tuple_t(string_t, callable_t(string_t)) calculator.callable?(required, given).should == false end it 'with args tuple having a block with captures rest' do required = callable_t(string_t, callable_t(object_t)) given = tuple_t(string_t, callable_t(string_t, 0, :default)) calculator.callable?(required, given).should == false end end end matcher :be_assignable_to do |type| calc = Puppet::Pops::Types::TypeCalculator.singleton match do |actual| calc.assignable?(type, actual) end failure_message_for_should do |actual| "#{calc.string(actual)} should be assignable to #{calc.string(type)}" end failure_message_for_should_not do |actual| "#{calc.string(actual)} is assignable to #{calc.string(type)} when it should not" end end end